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Spontaneous generation of discrete scale invariance in growth models
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We suggest that the short-wavelength Mullins-Sekerka instability, together with strong screening effects,
generate spontaneously a discrete scale invariance~DSI! in growth processes. A signature of this DSI is the
presence of log-periodic oscillations correcting the usual power laws. This is confirmed by extensive numerical
simulations on the needle model, using various growth rules~diffusion-limited aggregation, angle screening,h
model, and crack approximation! on systems containing up to 5000 needles, and by some experimental data on
geological cracks.@S1063-651X~97!04705-3#

PACS number~s!: 64.60.Ak, 05.20.2y, 61.43.Hv
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I. INTRODUCTION

In a recent series of papers, there has been growing
perimental evidence of log-periodic structures decorating
main power-law behavior in acoustic emissions prior to ru
ture @1# and in the seismic precursory activity before lar
earthquakes@2#. Log-periodic oscillations have also bee
documented in the fractal structure of arrays of cracks
geological media@3#. These log-periodic structures are th
expression ofdiscrete scale invariance~DSI!, the property of
a system that is invariant under adiscreteset of dilatations
only. ~It is crucial not to confuse DSI with the existence of
discrete scale. For instance, a square lattice is a discrete
tem, but does not have discrete scale invariance.! Unlike
continuous scale invariance, which is very common in all
critical phenomena of nature, DSI was considered, until
cently, as the artifact of man-made, discrete fractals or h
archical constructions. It is not necessarily so, however. F
mally, discrete scale invariance corresponds to comp
critical exponents, a situation which is actually possible
nonunitary systems like geometrical systems with nonlo
properties~percolation, polymers, and their generalization!,
or in system models with disorder~spin-glasses! on nonfrac-
tal lattices@4#. DSI has also recently been seen quite clea
in the mass-radius scaling relationship of diffusion-limite
aggregation~DLA ! clusters@5#.

The common aspect of the works@1–3,5# is that they can
all be ascribed to growth processes: the question arise
the possible existence of a common origin for DSI in grow
dynamics. Indeed, we would like to describe here in so
detail a mechanism that seems at work quite generally
Laplacianor diffusivegrowth processes. Consider as an
chetypal example, a system of parallel identically spa
cracks of the same length growing quasistatically under
action of a destabilizing stress. Excluding the possibility
branching, imagine they grow in size until a state whe
every other crack stops, and the others begin to grow
faster rate. Imagine then that the whole process repeats i
so a succession of period doubling occurs. If each pe
doubling occurs over a short time compared to the time
tween them, a set of discrete characteristic crack len
551063-651X/97/55~6!/6433~15!/$10.00
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scales are selected, scaling according to a geometrical se
A crack system is thus formed withdiscrete scale invari-
ance, while at the beginning all we had was the existence
a discrete scale~the initial crack spacing!. This physical sce-
nario is depicted schematically in Fig. 1. Whether it is po
sible or not is the subject of this paper. We note that sim
ideas have been advanced for thermally induced crack
brittle solids@6#.

We propose that the first ingredient in the cascade of
riod doubling be the Mullins-Sekerka instability@7#, whose
underlying mechanism is nothing else but the well-kno
‘‘lighting rod effect’’: in the presence of a Laplacian fiel
~like in electrostatics, DLA growth processes, and in ten
rial version in elasticity!, the gradient of the field concen
trates on domains having a large curvature, therefore lea
to their enhanced instability. As a result, the Mullins-Seke
instability is a short-wavelength~‘‘ultraviolet’’ ! instability
and the smallest wavelength allowed is always the most
stable~that there is such a smallest wavelength follows fro
the initial discrete scale!. To have a whole cascade howeve
it is necessary that the crack growth keeps on showin
sequence of period-doubling instabilities all along the grow
process. This, of course, is not obvious: even if the shor

FIG. 1. Schematic drawing of the period-doubling cascade
the growth of a system of parallel cracks or needles.
6433 © 1997 The American Physical Society
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wavelength is the most unstable, all the other longer wa
lengths are also unstable and should grow all together, m
ing up the subtle period doubling. We suggest in this pa
that nonlinear interactions between the unstable modes le
to a succession of period doubling due to screening, the
subharmonic catching up and eventually screening the le
ing unstable mode. We thus have a sequence of dynam
phases in each of which a single mode dominates. Afte
while, this mode becomes itself effectively unstable and
mode of twice its period becomes the next dominating mo
and so on. This picture must be taken with somecaution:
there are big fluctuations that ‘‘blur’’ the sequence, and i
might not be so obvious either by looking at the time evo
tion of the cracks, or their spatial arrangement: this w
depend on the sample. A more robust criteria for DSI will
the presence of log-periodic fluctuations decorating the m
power law.

We base our conclusions on four different sets of e
dence.

~i! We first present a simple perturbative analysis of
leading nonlinear interaction between two unstable mode
shows that, if in the linear regime all wavelengths are u
stable, the nonlinear interaction leads, by a screening me
nism, to a slowing down of the growth of the most unsta
one by the presence of its subharmonic. This is the precu
of the expected crossover to the phase where the sub
monic catches up, becomes the dominant mode, and scr
the previously most unstable mode.

~ii ! We then use the hodograph method@8# to tackle the
nonperturbative multimode problem and present further e
dence of the nonlinear interaction between modes leadin
a sequence where the faster growing mode is found to
given by the successive harmonics.

~iii ! We then present numerical simulations for the nee
problem@9,10# using various growth rules~DLA rule, angle
screening rule, andh model! on systems containing up t
5000 needles. We analyze the density of needles as a f
tion of the distance to the base and document clear evide
of log-periodic modulations of the leading algebraic deca

~iv! Motivated by observations in geological settings
joints @3#, we then present numerical simulations of qua
static crack growth. When taking into account all interactio
between cracks, we find a similar behavior as for the need
namely, log-periodic modulations decorating the average
gebraic decay of the crack density. We also present a c
parison with geological data on joints exhibiting appro
mately the period-doubling cascade.

These results are analyzed in detail, with a special emp
sis on the possible traps in the statistical analysis of s
elusive problems where thesignal-to-noise ratiois not large.
We thus develop synthetic tests, used as null hypothesi
compare with our results. Taken together with the other p
viously reported evidences, the result provided by o
present analysis suggests a very coherent picture, nam
thatcomplexcritical exponents are a general phenomenon
rupture and growth phenomena. The needle problem a
lyzed here is a simplification of general growth processe
that branching is neglected. However, we do not expect
additional feature to modify our main conclusions: branch
might make more fuzzy the log-periodic structures by add
more noise on the system. However, the numerical evide
e-
x-
r
d
xt
d-
al
a
e
e,

-
l

in

-

e
It
-
a-
e
or
ar-
ens

i-
to
be

e

c-
ce
.

-
s
s,
l-
-

a-
h

to
-
r
ly,
n
a-
in
is
g
g
ce

in this case is still quite clear@5#. In addition to being a
reasonable approximation, needles are actually real phys
objects, in the form of cracks. Therefore, the problem a
dressed in this paper is of direct application to rupture p
nomena, dealing with objects like cracks, joints, faults, a
earthquakes. The present work provides an explanation
the value, often found close to 2 for the preferred discr
scaling ratio, as resulting from the period-doubling casca
of successive Mullins-Sekerka instabilities.

In addition to acoustic emission and seismic foreshoc
DLA, and joints, the physical situation studied here sho
have immediate applications to the flanks of oceanic ridg
to the cracking of mud in deserts and dried up lakes,
crevasses in glaciers, and to thermally induced cracks in g
thermal energy exploitation, as pointed out in@6#. We also
expect it to apply to more general situations in the prese
of additional long-range interactions, as in the side branch
of parallel stripe ferrofluids@11# in which the Laplace equa
tion stems from the fluid incompressibility and the addition
long-range force is due to magnetic interactions. It wou
also be worthwhile exploring the possible application of o
ideas to the various systems falling in the DLA class or
lated to it, such as electrodeposition, dendritic crys
growth, and viscous fingering. All are variations of the pro
lem of the time development of a domain which at each po
of its boundary, moves with velocity that is the gradient
its Green’s function. In this situation, instabilities of th
Mullins-Sekerka type can occur and it is an intriguing que
tion as to whether the nonlinear interactions can stabilize
discrete period-doubling cascade found here. In particu
we should mention that recent experiments have observ
spatial period-doubling instability for a regularly spaced
ray of dendritic tips with perioda in directional solidification
@12#, when decreasing the growth rate below a thresh
@13#. In @13#, the critical velocity at which the period dou
bling occurs is predicted to be a decreasing function of
dendritic spacing. We would thus expect that a successio
period doubling should occur as the dendritic growth rate
further reduced. For a small growth rate, a lot of mod
should be unstable simultaneously as in the needle prob
we consider here and it is an interesting possibility whet
our proposed scenario for the needles could come into p
for the dendrites. One should, however, be cautious beca
the condition for the validity of these calculations for de
drites @13# may fail at small growth rates, for which furthe
complication may occur. Indeed, the diffusion of solute p
ticles acts as a stabilizing factor introducing a characteri
diffusion length, which is inversely proportional to th
growth rate. The period-doubling scenario for dendri
holds when the distance between the dendrites is larger
the diffusion length. If the critical velocity decays slowe
than 1/a, the diffusion length becomes smaller and smal
than the dendrite spacing and the period-doubling casc
should, in principle, continue. In the reverse case, the di
sion of solute particles will modify the physical scenar
beyond the point where it becomes larger than the dend
spacing. We leave for the future the exploration of the c
cade of period doubling to the problem of an array of de
drites.

Section II presents our analytical calculations. Section
contains the numerical simulations of needle systems. S
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55 6435SPONTANEOUS GENERATION OF DISCRETE SCALE . . .
tion IV presents a numerical simulation of an approxim
algorithm for crack growth and the comparison with re
geological data on joints. Section V contains our conc
sions. The Appendix presents an analysis of the null hypo
esis according to which the numerical evidence could be
result of chance alone. Our Bayesian’s analysis shows
the statistical significance of the conclusion that the lo
periodic structure is a genuine physical phenomenon is
tremely high.

II. DISCRETE SCALE INVARIANCE IN LAPLACIAN
GROWTH MODELS: SOME ANALYTICAL REMARKS

The first model we discuss is a needle model of Laplac
growth @9,10#. It consists ofN parallel, equally spaced
needles which grow in the same direction, without branch
~we chose the needle spacing as the unit of distance!. Let us
call f the field that determines the growth of the needl
The dynamics is determined by solving Laplace’s equati

Df50, ~2.1!

subject to the constraint thatf vanishes on the needles, an
that f increases linearlyf'Ay at large distance from the
needles. These boundary conditions together with Eq.~2.1!
determine completely the fieldf for a given needles configu
ration. The evolution rule of the model is then given
specifying the growth velocity of every needle according

dli
dt

[Ei} lim
r→0

Ar u¹f~r1r i !u, ~2.2!

wherer i is the position of thei th needle tip. Equation~2.2!
expresses that the growth velocity is proportional to the to
flux of incoming particles~in the language of DLA! or to the
stress intensity factor in the language of crack mecha
~the model corresponds exactly to the antiplane crack p
lem!.

A. Exponential screening

This system is very well known@10#, but we wish to
remind the reader of a few results that are relevant for w
follows. Let us callz the plane of the needles, withx along
the needles basis andy parallel to the needles. The proble
can be mapped onto a similar problem of needles growin
a star pattern in thew plane~Fig. 2! through the mapping

w5expS 2
2ip

N
zD . ~2.3!

Needles in thew plane now point at angles differing b
2p/N and their length isl j85exp(2pl j /N), as can be seen b
inserting zn5 j1 i l j in Eq. ~2.3!. By observing that]wf
5@1/w8(z)#]zf, a realization of needle dynamics in thez
plane maps onto a realization of the dynamics in thew plane.

The feature we want to illustrate here isscreening. To do
so, consider now a case with needles of alternate leng
l 2i115L1 andl 2i5L0 . By one more conformal mapping, w
can map the exterior of the unit disk in a third compl
plane, call it thez plane, onto the exterior of the star-shap
object formed by theN needles in thew plane through@14#
e
l
-
h-
e
at
-
x-

n

g

.

l

s
b-

at

in

s;

w5 f ~z!5CS zN/21z2N/2

2
1aD 2/N, ~2.4!

wherea andC are real constants,uau,1. In this mapping,
the unit circle of thez plane maps onto the needles of th
w plane. The solution of Laplace’s equation with a field va
ishing on the needles in thew or z plane follows then from
the basic, obvious solutionf5(AN/2p)lnuzu in the z plane.
The tip positions maximizew for z on the unit circle. The
values of the two needle lengths in thew plane follow

L185C~11a!2/N, L085C~12a!2/N, ~2.5!

and thus in thez plane

L15
N

2p
ln C1

1

p
ln~11a!, L05

N

2p
C1

1

p
ln~12a!.

~2.6!

From Eq.~2.2! and with Eq.~2.4!, the fields at the two tips in
thew plane are proportional to@d2f (z)/dz2#21/2 @10#, yield-
ing

E18}~11a!1/221/N, E08}~12a!1/221/N, ~2.7!

with a ratio

E08

E18
5S L08L18D

~N22!/4

. ~2.8!

Getting back to the originalz plane, we get the screening fo
our problem of parallel needles@15#:

E0

E1
5S L08L18D

~N26!/4

5expF S p

2
2
3p

N D ~L02L1!G . ~2.9!

ForN large, the second term in the exponential is negligib
SettingL12L0[D.0, the difference in height, we have

FIG. 2. The conformal mappings involved in solving the d
namics of parallel needles.
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E0

E1
'expS 2

p

2
D D , ~2.10!

establishing that the screening isexponential. This is the first
ingredient in the problem: height differences lead to a v
strong screening and needles of smaller size are very qui
left behind.

B. The Mullins-Sekerka instability and possible DSI scenario

The second key ingredient concerns instabilities.
handle these, let us replace the needles by a continuous a
Results obtained by keeping a discrete array would be m
complicated but contain the same physics. We describe
interface by its coordinateyint(x,t) subject to the evolution
equations

Df50,
~2.11!

v5¹f.

Again, the boundary conditions aref50 on the interface,
andf'Ay at large distance from the interface. The Mullin
Sekerka@7# instability corresponds to the fact that perturb
tions with higher spatial frequencies are more unstable:
perturbation of the interface of the form

yint~x,t !5y0~ t !1d~ t !sinkx, ~2.12!

grows, indeed, like@14#

dd

dt
5Akd. ~2.13!

For a continuous interface, our model with no short dista
cutoff would allow arbitrarily largek’s. In practice, this does
not occur, either because there is actually a surface ten
that we neglected so far, or because there is another na
short distance cutoff, e.g., the needle spacing in the prob
we discussed first. Let us reinstall this distanced. This dis-
tance defines a Brillouin zone, and associated with it i
maximum meaningful wave vectork5p/d. One is tempted
to conjecture that, in the discrete needles problem,
Mullins-Sekerka instability actually gives rise to a sort
cascade. Indeed, an extra simplified picture of the interfa
growth would be that, under random perturbation, the m
unstable mode~the one with highest spatial frequency,k
5p/d! grows first: this corresponds to every other nee
becoming a bit longer. Following then the discussion in
first part of this section, a strong screening takes place.
sume that the shortest needles are screened so much tha
actually stop growing and do not influence further growth
the longest ones. Then we are back to the original situa
but with a needle spacing twice as bigd→2d. One then
expects that the new most unstable mode, now withk→k/2
starts growing, bringing us back to the previous situat
with, however, arescalingby a factorl52. This rescaling
corresponds so far to properties along thex axis, i.e., parallel
to the needles basis. However, from the equations of mot
it is easy to see that this rescaling should also be observe
the y direction. Indeed, Eq.~2.13! shows thatk→k/2 leaves
the equation invariant fort→2t, which in turn, from the
y
ly
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front velocityv5¹f, leads toy→2y. In this caricature, one
would imagine that the needles evolution therefore loo
something like Fig. 1. Such a pattern obeysdiscrete scale
invariance. Let us stress that, in this schematic reasoning,
presence of a short distance~ultraviolet cutoff! is crucial to
impose the existence of a highest spatial frequency mod

This argumentation has weak points, the main one be
that events do not happen sequentially. Rather, under a
dom perturbation, all modes start growing and interfere, w
each other, spoiling to some extent the foregoing picture.
what extent exactly do they spoil it?

C. Two mode nonlinear coupling

While it is very difficult to answer this question rigor
ously, we can at least provide some interesting argume
Since in the naive discussion, we were led to consider mo
k andk/2 growing successively, let us now study a perturb
tion with both of these modes in competition. For notation
convenience we setk52a. A perturbation of the interface
then looks like

yint~x,t !5y0~ t !1e~ t !sinax1m~ t !cos2ax. ~2.14!

We assume that initiallye!m such that the subharmonic i
initially of very small amplitude and provides a perturbatio
on the growth of the main mode. We also take both para
eters much smaller than 1. We write similarly the solution
Laplace’s equation as

f5A@y2y0~ t !#1h~ t !sin~ax!e2a~y2y0!

1r~ t !cos~2ax!e22a~y2y0!1c~ t !. ~2.15!

It is easy to check thath5O(e), r5O(m). We will keep
terms of ordere, e2, m, m2, andem. The expansion of expo
nentials generates higher harmonics; what we will do for
moment is simply neglect those larger than 2a, i.e., project
onto the two modes we started with. The expression~2.15!
solves automatically the Laplace equation. Writing that E
~2.15! satisfies the boundary conditionf„yint(x,t)…50 al-
lows us to geth andr as a function ofe andm. Computing
the gradient off at the interface and using it to get th
interface velocity (v5¹f) and identifying itsy component
]f/]yuyint with dyint /dt gives the equation of evolution o
the amplitudese andm of the perturbations

de

dt
5Aae1Aa2em,

~2.16!

dm

dt
52Aam2A

a2e2

2
.

The first term in each of these equations is the stand
Mullins-Sekerka instability. From it we see that the highe
~spatial! frequency mode~herem! grows faster in agreemen
with Eq. ~2.13!. What we see also, however, is that th
growth ofe slows down the growth ofm. Hence for an initial
fluctuation withe!m, e might overgrowm in the long run.
In other words, while the perturbation at wave vectork is the
most unstable, it is indeed replaced byk/2 in the long run,
like in the naive discussion. Of course, this works on
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55 6437SPONTANEOUS GENERATION OF DISCRETE SCALE . . .
within the approximation~2.16!, that is, only fore at most of
the order ofm and both much smaller than 1, so this is n
enough to conclude.

D. Use of the complex hodograph method

To go beyond this perturbative analysis, we now use
complex hodograph method@8#. Associated with the forego
ing field f we introduce the analytic function

F~z!5f~x,y!1 ic~x,y!, ~2.17!

where analyticity requires]xf52]yc, ]yf5]xc. Briefly,
the hodograph method consists in looking for the solution
the Laplace equation in terms ofx,y as a function off and
c. Introduce the width of the systemW, such that the inter-
face is defined forxP@2W/2,W/2# ~in the discrete model
W5N in units where the needle spacing is 1!. Then, it is
possible to parametrize the complex coordinates of the in
face by

zint~s,t !, sP@2AW/2,AW/2#, ~2.18!

with the conditions that]szint(s,t) is analytic and nonzero
within the strip@2AW/2,AW/2# and that@8#

] tzint~s,t !]szint~s,t !*2] tzint~s,t !* ]szint~s,t !522i .
~2.19!

Expression~2.19! writes the growth conditionv5¹f. It is
now possible to find an exact solution to the equations
motion, with again the velocity of the interface being giv
by the gradient of the fieldf. A solution based on two har
monics follows from

zint~s,t !5C0~ t !1 i
s

A
1C1~ t !e

2 isa/A1C2~ t !e
22isa/A,

~2.20!

and the equations of motion are

Ċ02aC1Ċ122aC2Ċ25A,

Ċ12aC1Ċ22aĊ0C122aĊ1C250,

Ċ222aĊ0C250. ~2.21!

On this solution, it is easy to check numerically that forany
initial amplitudesC1(t50), C2(t50), it is C1 that domi-
nates at large times.

Another key weakness of the naive argumentation is
it focuses on the sequence with discrete scal
k→k/2→k/4, etc., neglecting other modes that might w
spoil this discrete scaling, like for instance 3k/4. To see
whether the discrete sequencek/2n21→k/2n is indeed ‘‘in-
sensitive’’ to these other modes, let us consider, settink
54a, a solution of the form

zint~s,t !5C0~ t !1 i
s

A
1(

j51

4

Cj~ t !e
2 i jsa/A. ~2.22!

Equations are much more difficult to solve, and the fin
behavior has to be studied for initial conditions defined in
t

e

f

r-

f

at
g
l

l
a

four-dimensional space, which is complicated. We have
seen any clear pattern emerging, except that if we start w
C1!C2!C3!C4!C0 , C2 ultimately overgrowsC4 , and
thenC1 overgrowsC2 , while C3 remains almost constan
~an example is shown in Fig. 3!. Moreover, this behavior
extends all the way to the region whereC1'C2'C3'C4
!C0 . This supports the naive picture; however, it is al
possible to find rare initial conditions such that ultimately
is C2 , C3 , or C4 that overgrows the others.

It is not clear to us how to go further. Of course, we a
really interested in the limit of an infinity of needles, an
therefore a random perturbation would decompose on an
finity of modes. Even if sometimes the sequencek→k/2 is
spoiled by some special conspiration of amplitudes, nev
theless in most cases it will occur, so if the perturbation is
some time dominated by a wave vectork8 that does not
belong to the initial sequence, this one can nevertheles
the ancestor of a new sequencek8→k8/2 and so on, presum
ably preserving DSI.

E. Signatures of the period-doubling cascade

Our purpose so far was mostly to point out that DSI w
a worthwhile hypothesisin the needle growth model. We
think there is enough evidence that it might be there to
tually investigate the question numerically in some deta
Let us now recall some standard results for the need
growth. Introducen(y) the number density of needles e
tremities, such thatn(y)dy is the total number of needle
whose extremities are in@y,y1dy#. There is a number of
theoretical arguments confirmed by numerical simulatio
that lead to the following asymptotic form@16,15#:

n~y!}y22, y→`,

where the limity→` is taken after the limitN→`, N the
number of needles. The discrete scale invariance, if it is
deed generated by the dynamics, would lead to correction
the form @4#

n~y!}y22@11A cos~v ln y1f!#

FIG. 3. An example of dynamics for an interface perturbed
four harmonics, as determined using the hodograph method~2.22!.
The initial values of the amplitudes areC051, C150.001, C2

50.08,C350.15, andC450.25.



ow
a
ta
tio

r

d
c
he
-

c’
an

.
e
tu
tio
-
e

b
B
-
th
k

f

n

an
th
ge
ed
d
e
en

e

se
g
en

f
edle
le,

gle

, in-
ve a
en-
me
the

wth

are
ical

e

o-
t a
e

y.
x-

n
the
ga-

ll

t is

ent
in
n
ic
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if the needles set was really a discrete regular fractal. H
ever, even if DSI settles in, this can only occur with fluctu
tions. By analogy with the case of a random discrete frac
where the rescaling factor fluctuates at every renormaliza
iteration @4#, the previous formula should be replaced by

n~y!}y22@11Ay2acos~v ln y1f!#, ~2.23!

wherea depends on the fluctuations of the rescaling factol,
v52p/ ln l, wherel is an ‘‘average’’ @4# of the rescaling
factors. From the above discussion we expectl'2.

Now, a form similar to Eq.~2.23! has been recently foun
in DLA, with n(y) replaced by the mass density at distan
r from the center of the cluster. Actually, a surprise of t
studies in@5# is that two periods occur with comparable am
plitudes in Eq.~2.23!, corresponding tol'2 andl'4. It is
important to stress that the latter is not a sort of ‘‘harmoni
of the former. Indeed, in a discrete regular fractal, invari
under scale transformations with generatorx→lx, the al-
lowed values ofv would be of the formn(2p/ ln l) corre-
sponding to successive rootsl1/n of l, not integer powers
Moreover, the successive harmonics would decay expon
tially fast. The presence of the two terms in DLA was ac
ally interpreted by saying that the discrete RG transforma
appropriate for DLA, i.e., the one of which DLA is the in
variant measure, is made of two portions of straight lin
with respective slopesl and l2, leading to a log-
‘‘quasiperiodic’’ behavior@17#. This is quite far from the
naive picture we proposed earlier, and surely there is a
theoretical gap to be filled in to explain this phenomenon.
simple analogy with DLA, having in mind that DSI is pro
duced by the same mechanism in both problems and
DLA branching is irrelevant for that matter, we thus loo
more generally for an expression of the form@5,4#

n~y!}y22F11(
i
Aiy

2a icos~v i lny1w i !G . ~2.24!

A similar expression with an exponent21 would hold for
the cumulative quantityN(y), the number of needles o
height greater or equal toy.

III. NUMERICAL SIMULATIONS

A. The angle screening model

The most efficient way of simulating the Laplacia
growth model is by using random walkers@18#. We release
them from the top of the system and let them move at r
dom until they approach the needles. If a mover touches
side of a needle, it then disappears and another one is
erated. If the mover passes through the empty site imm
ately above the top of a needle it sticks to it, and the nee
height increases by one unit. This model does not give sp
tacularly good results. The reason is presumably the pres
of logarithmic corrections to scaling, as argued in@15#. In
fact, even for very big systems, the exponent ofn(y) is
poorly reproduced. We will present results for this mod
later on.

To start, we will also use another model that is suppo
to be in the same universality class, but probably has ne
gible logarithmic corrections. This model is the angle scre
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ing model @19#. To simulate it, we start with an array o
needles of random arbitrary heights. We then let each ne
grow according to the following rule. For a given need
look at the maximum left (uL) and right (uR) screening
angle determined by all the other needles~Fig. 4!. We define
the ‘‘open view angle’’a to be

a5p2uL2uR , ~3.1!

the growth rate is then taken to be proportional to this an
a, normalized byp up to some powerh ~h model!,

v}S a

p D h

, ~3.2!

so the highest needle has the greatest growth rate, i.e.
creases by one unit each step, while shorter ones ha
smaller growth rate. This is supposed to simulate the scre
ing effect. Intuitively the chance for one needle to get so
outside material necessary to its growth is proportional to
area enclosed in this open view anglea. Periodic boundary
conditions have been used in the computation of the gro
rate at every step.

The results for the exponent of the second model
known to be much better and very close to the theoret
value. We have generated ten samples ofN53000 needles
for h51. We have usually let this sample grow until th
highest needle reaches the heightN. In this case, the system
having comparablex andy sizes can be expected to repr
duce fairly well the asymptotic regime in which we expec
dependence like Eq.~2.24! to hold. For each sample, w
have first considered the integrated quantityN(y), the num-
ber of needles of length greater than or equal toy. At small
and largey, it is expected to behave in a nonuniversal wa
For smally, this is because the asymptotic behavior is e
pected to hold only for largey. For too largey, this is
becauseN is finite, so the region is very badly sampled. O
every sample, there is a region close enough to
asymptotic regime. This can be checked by plotting the lo
rithm of N(y) as a function of lny ~we use heredecimal
logarithms! and finding the region where the plot is we
approximated by a straight line~see Fig. 5 for an example!.
This region somewhat varies from sample to sample, bu
always aroundyP @150,2700#. That we are close to the
asymptotic regime is checked by the value of the expon
that fluctuates from sample to sample but is always found
the regionmP @0.96,1.04# ~the exponent is much better tha
in the Laplacian model, probably because the logarithm
corrections have a much smaller amplitude!. For this

FIG. 4. Growth rules for the angle screening model.
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55 6439SPONTANEOUS GENERATION OF DISCRETE SCALE . . .
asymptotic region, one usually identifies oscillations arou
the straight line that can be fitted by formula~2.23! @we do
not yet consider Eq.~2.24!, which would involve too many
fitting parameters here#. Several methods of fit are possibl
in particular, one can fitN(y) or its logarithm. The latter
case seems to reproduce more stable results. Out of
samples, seven values ofv52p/ ln l ~ln is the decimal loga-
rithm! are in the regionvP @8,12# ~corresponding tol
P @3.3,6.0#, with three values very close tov'10.4
52p/ ln 4 (l.4), one value was about twice as bigv
'21 (l.2), and two values were much lower, withv<5
(l.18), and probably not significant. Indeed, several thin
have then to be noticed. First, the range of values ofy de-
fines an interval in logarithmic scaleD ln y5ln ymax/ymin ,
with a valueD ln y51.2, corresponding tov55.0. Any
value ofv lower than this cutoff corresponds merely to fi
ting the finite sample size and cannot be considered sig
cant, ruling out two samples. For the remaining signific
values ofv, thex2 is improved by a factor between 2 and
On a typical sample, as in Fig. 5, it is also clear that ot
frequencies are relevant, corresponding to roughly anv two
times bigger.

At this stage, it is useful to stress that we are looking
a rather elusive quantity. The amplitude of the log-perio
term is expected to fluctuate from sample to sample@4,5#.
Moreover, the values ofv are also expected to fluctuate fro
sample to sample, in a way that can be handled in sim
models@4#, but is largely unknown here. For comparison, w
perform in the Appendix the same analysis for random nu
bers generated following a power-law distribution with t
same exponent 1. In other words, we test the null hypoth
that the log-periodic oscillations could just be due to norm
fluctuations in a power-law distribution. In the Appendix, w
are able to reject this null hypothesis at an extremely h
confidence level.

To get more precise information, we have construct
like in the DLA case@5#, the ‘‘local dimension.’’ This quan-
tity is obtained by

FIG. 5. A typical example of the cumulative distributionN(y)
of needle lengths for the angle screening model, together with
best fit using a power law. The corresponding exponent is 1.02
very close to the asymptotic value 1. Regular oscillations are cle
visible.
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D~y!5
d lnN

d lny
, ~3.3!

and according to Eq.~2.24! it should go like

D~y!5211(
i
Aiy

2a icos~v i lny1f i !. ~3.4!

The functionD(y) for a typical sample is represented in Fi
6, where regular oscillations are clearly visible. Since
expect the two main values ofv to play comparable roles
rather than doing a fit of this form, it is much better to loo
at the Fourier spectrum~in variable lny! of D(y). This was
done by a variety of techniques, in particular the Lomb p
riodogram, to get rid as much as possible of the effect of
damping termy2a in Eq. ~3.4!. As in @5#, we represent the
results of this study by considering histograms of the pe
of the Fourier spectrum. Since we do not have a large nu
ber of samples, we present the results in a manner m
suitable to get rid of the noise. We thus only consider the t
main peaks of the periodogram for each sample. From the
of these peaks, we construct their cumulative distributi
and then smooth it. Its derivative then provides the den
probability to obtain a given frequency in Fourier space. T
result is shown in Fig. 7. This histogram is defined on t
interval vP@vmin ,vmax# where vmin'5 (l'18) is deter-
mined by the size of the sample, andvmax'35 (l'1.5) is
determined by the typical distance between sample poi
We observe three peaks in this histogram, correspond
respectively, to valuesl53.760.4, l51.960.2, and l
51.460.3. The peak atl'2 is clearly significant, being
well away from the small and largev cutoffs. The other two
peaks are unfortunately quite close to our cutoffs, and
might be safer to discard them as nonsignificant. Howev
we observe that the first peak is close to the valuel'4 of
the DLA case. Also, the third peak is close tol5&, and
could well be interpreted as a harmonic.

Finally, as was observed in the DLA case@5#, we have
checked that the oscillations disappear when quantities s
asN(y) are averaged over the ten samples—what remain

e
4,
ly

FIG. 6. The local dimensionD(y) obtained as the local loga
rithmic derivative ~3.3! of N(y) shown in Fig. 5. Note that the
oscillations are much more visible.



a
lla

d

th
n

ap

o
in
ie

n
ov

rith-
i-
d-

has

is
ing

on.
e to
, and
nd
lis-
hus
iod
in

ri-

ri- -

6440 55Y. HUANG, G. OUILLON, H. SALEUR, AND D. SORNETTE
simply noise decorating the simple power law. We think th
this is due to random dephasing of the log-periodic osci
tions due, in particular, to finite size effects as discussed
@4#. Since most authors considered only averages ofN(y) to
get a better statistics, they could not observe the log-perio
oscillations.

B. h model

We have performed a similar analysis in a variant of
model where the screening goes as a power of the scree
angle. We present the results obtained forh5 1

2 ~h51 pre-
viously!. For an unknown reason, the asymptotic region
pears smaller in that case,yP@700,2800#. The exponent
changes and we find a value'1.2560.15 instead of 1 pre-
viously for h51. The same analysis was performed f
D(ln y), leading to the histogram of frequencies shown
Fig. 8. We observe a slight shift towards higher frequenc
but the pattern is totally consistent.

C. Random-walker algorithm

For the original random diffusion model, the simulatio
takes a much longer time. Moreover, as commented ab

FIG. 7. The histogram of the two main peaks of Lomb pe
odograms performed onD(y) for ten samples.

FIG. 8. The histogram of the two main peaks of Lomb pe
odograms performed onD(y) for theh model forh50.5.
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one does not expect too good results anyway due to loga
mic corrections@15#. Figure 9 shows the cumulative distr
butionN(y) of a typical sample, and Fig. 10 the correspon
ing local dimensionD(ln y). The log-periodic oscillations
are nevertheless clearly visible, withl'2. We have not tried
to get a strong statistics in this case as the DLA case
been treated extensively with very large statistics in@5# and
the random-walker algorithm for the needle problem
bound to perform poorly compared to the angle screen
model.

IV. A MODEL OF CRACK GROWTH

The previous study deals with a rather idealized situati
As we expect the generation of discrete scale invarianc
be universal in the same sense as critical exponents are
to depend only on general properties, here instability a
screening, it is useful to generalize our study to more rea
tic models that can be compared to experiments. We t
revisit the crack problem in which the cascade of per
doubling was first envisioned for thermally induced cracks
brittle solids@6#.

FIG. 9. A typical example of cumulative distributionN(y) for
the random-walker algorithm.

FIG. 10. The local dimensionD(y) obtained as the local loga
rithmic derivative~3.3! of N(y) shown in Fig. 9.
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55 6441SPONTANEOUS GENERATION OF DISCRETE SCALE . . .
A. Single crack growth

Consider the problem of crack growth in antiplane stre
In the case of a remotely applied antiplane shear stress
plied at infinity in a plane parallel to the (y,z) plane, both the
displacementuz and stress fieldsxz obey Laplace’s equation
this situation is known as ‘‘antiplane’’ stress and reduces
tensorial elastic equation into a scalar problem@20#. In the
presence of a crack of length 2a1 parallel to the shear plane
the previously uniform stress field is modified so as to ob
Laplace’s equation with the boundary condition of vanish
stress on the crack edges@21#. As a consequence, the stress
reduced near the crack edges, but is enhanced at the c
tips and the growth occurs there. Ideally, there is a str
singularity at the cracks tips, which is the exact counterp
of the one found for the gradient of the field in the nee
model. In the mechanical literature, the stress intensity
crack tips is described by the so-calledstress intensity factor,
noted asK. The growth of cracks is controlled byK. The
stress intensity factor depends on the intensity of the rem
applied stress, on the geometry of loading, and on the c
length. The intensity of stresses in the region near the cr
tip is proportional toK. For the general case where th
stress field s(x,y) is nonuniform but symmetric
s(x,y)5s(x,2y), one has@22#.

K5
2

Apa1
E
0

a1 s~0,y!

@12~y/a1!
2#1/2

dy, ~4.1!

which reduces to the well-known relationshipK5sApa1 in
the uniform case. Classical brittle fracture mechanics
based on the fact that as long asK has not reached a critica
value Kc , the crack remains stable. IfK becomes greate
than Kc , the crack propagates, in general in an unsta
manner, with a velocity equal to a fraction of the speed
sound, leading ultimately to the total breaking of the m
dium. However, a lot of experimental evidence that has b
rationalized theoretically shows that a crack does not rem
stable, even belowKc @23#. This is the so-calledslow crack
growth regime. This growth is thermally activated and d
pends on the chemical properties of the fluids that can fill
crack leading to corrosion-assisted crack growth. In this
gime, which is the most often encountered practically,
crack tip velocity is found to be proportional toKm with m
ranging from 2 to 60 depending on the material and con
tions. In the ideal limit of a dried vacuum, the thermal flu
tuations prevail and theoretical analysis shows that, at s
ciently small stresst, the crack tip velocity is proportional to
K. This is exactly the growth law~2.2! used for the needle
problem studied above, since limr→0Ar u¹f(r1r i)u is noth-
ing but the~stress! intensity factor. Theh model would then
correspond to the more general situationmÞ1.

B. Crack interactions

Consider two parallel cracks with their centers along
x axis. The computation of the stress intensity factor of e
crack in the presence of the other one is a difficult task. E
stress intensity factor is, in general, smaller than its va
when isolated, exemplifying again the effect of screeni
The larger of the two cracks will be less screened and
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thus grow faster, eventually stopping the smaller crack.
have discussed this phenomenon in Sec. II. Generalizin
many cracks, the mechanical literature uses finite or bou
ary element methods@24#, or various approximation scheme
@25#. Here, we investigate a system of thousands of cra
and thus need an efficient algorithm. This can only be
tained with some approximation, which we now explain.

The approximation we use is the pairwise ‘‘doubl
scattering’’ interaction scheme. Consider a crack of len
a1 parallel toy at x50 in a medium where the stress field
originally uniform. Near this crack, the stress field becom
nonuniform, and we denote it bys1(x,y). It is calculated
exactly by conformal techniques. Introduce a second crac
lengtha2 at a distanceX from the previous one. The pair
wise double-scattering approximation consists in calculat
the stress intensity factor of the second crack as

K25
2

Apa2
E
0

a2 s1~X,y!

@12~y/a2!
2#1/2

dy, ~4.2!

wheres1(x,y) is the foregoing stress field in the mediu
due to crack 1 only. Similarly, the stress intensity factor
crack 1 is estimated by

K15
2

Apa1
E
0

a1 s2~0,y!

@12~y/a1!
2#1/2

dy, ~4.3!

where s2(x,y) is the stress field that would exist due
crack 2 only. Notice that the stress field is modified once
one crack, which is then applied to the other crack, hence
term ‘‘double scattering.’’ We can summarize this appro
mation by writing

Ki5Ki
0Ci

j ,

whereKi
0 is the stress intensity factor of cracki in the ab-

sence of crackj , for a homogeneous remotely applied stre
s. Ci

j is a correction factor that expresses the action~4.2! of
crack j on cracki .

ForN parallel cracks,k51,...,N, we make an additiona
approximation that the stress intensity factor of a cracki can
be written as a product of multiplicative corrections

Ki5Ki
0)
k51

N

Ci
k ,

each of the correction factorsCi being calculated using the
pairwise double-scattering scheme. Note that, for small c
rectionsCi

k close to 1, this multiplicative scheme is the sam
as the alternative additive one, up to first order inCi

k21. The
additive scheme provides, in general, a lower bound an
unable by construction to account for cooperative effec
The present multiplicative scheme mimics the nonlinear
operative behavior of multicrack assemblies.

At each time step, we calculate the stress intensity fac
Ki of each cracki according to these equations and increa
each crack length by an amount proportional toKi . This
amounts to using them51 growth law.
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FIG. 11. Map of the 5000 cracks that hav
grown according to the rules described in th
text. This configuration corresponds to the tim
where the largest crack has a length equal to o
third of the size of the system.
s
s
t
w
o

o
ac

a
g
o
in
-
w

pre-
the
al
an
ree-

is
itial
een

re
xis-

xpo-
C. Results of the growth of a population of cracks

Using the previously defined model, the log-periodic o
cillations are strikingly more visible than for the previou
simulations for the needle problem. This is probably due
the fact that our approximation scheme enhances the gro
of large cracks in comparison to small cracks and thus b
the instability and screening mechanisms.

We simulate 5000 cracks, of initial length randomly ch
sen between 0.49 and 0.51. The spacing between two cr
is also chosen randomly in the interval@0.99; 1.01#. Periodic
boundary conditions are introduced alongOx. The compu-
tation stops when the largest crack reaches a length equ
one-third of the size of the system, corresponding to a len
approximately equal to 1666. The density distribution
crack lengths is then computed using a logarithmic binn
introduced in@3#, which is optimized for power-law distribu
tions. Figure 11 shows the 5000 cracks that have gro
-

o
th
th

-
ks

l to
th
f
g
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Notice that one can almost see with the bare eye the
ferred scale ratio 2 in the crack lengths. Figure 12 shows
density distribution of crack lengths obtained for a typic
simulation. A power-law behavior is found over more th
three decades, with an exponent again equal to 2, in ag
ment with the lawn(y)}y22 found for needles@16,15#. In-
deed, since we use here antiplane elasticity, the problem
scalar and is in the same universality class as the in
needle problem. Figure 13 presents the difference betw
the data and the linear trend~in log-log plot, qualifying the
power law!. Very clear oscillations can be observed. Figu
14, shows the Lomb periodogram, which suggests the e
tence of a single peak atl52 precisely. We performed six
realizations of these simulations and observed that the e
nent is very close to 2 (1.9960.01). The dispersion in the
discrete scaling ratiol is found to be larger: l52.25
60.3.
s
FIG. 12. Density distribution of crack length
obtained for a typical simulation.
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FIG. 13. Difference between the density di
tribution and the simple power-law behavior~lin-
ear in log-log plot!, showing the~log-periodic!
oscillations.
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D. Real geological cracks

In addition to the evidence presented in@3#, we present
other data found for cracks in rocks~also called joints in the
geological literature! in Fig. 15. In Fig. 15~a!, the joints are
presumably formed under thermal stressing upon cooling
volcanic rocks in Hawaii. We can see with the bare e
evidence of size ratios 1:2:4 approximately. This situation
probably close to the one analyzed in@6#. The other data se
shown in Fig. 15~b! has been sampled at a road cut ne
Watkins Glen at the southern tip of Seneca Lake, New Yo
We do not know the stressing conditions, only that the joi
correspond mainly to mode I cracks working in the open
tensile mode. Figure 16 shows the Lomb periodogram of
data set of Fig. 15~b! @15~a! contains too few cracks#, show-
ing good evidence of discrete scale invariance with a p
ferred scaling ratio close to 2. The realization that screen
is important for crack propagation in basalt has been
of
e
s

r
.
s
g
e

-
g
-

cussed in@26#. The mechanism whereby cracks grow and a
selected, with only a few finally ‘‘surviving’’ at lengths a
large as in Fig. 11 has also been noted for joints@27#. How-
ever, the period-doubling mechanism studied in the pres
paper has not been pointed out. It is also noteworthy that
screening and instabilities, the two key ingredients for
appearance of the period doubling, are as effective in
scalar~needle! problem as in the tensorial~crack! case.

V. CONCLUSION

Motivated by evidence of discrete scale invariance, in
form of log-periodic oscillations, from simulations on diffu
sion limited aggregation@5# and from crack data@3#, we have
performed an analysis of a simplified model of DLA, th
needle problem, which has also direct application to cra
growth. Based on perturbative analysis and some exac
-
at
FIG. 14. Lomb periodogram of the data pre
sented in Fig. 13 showing a well-defined peak
l'2.
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6444 55Y. HUANG, G. OUILLON, H. SALEUR, AND D. SORNETTE
sults from the hodograph method, we have suggested tha
two basic ingredients leading to DSI are the sho
wavelength Mullins-Sekerka instability and the stro
screening of competing needles. These analytical res
have been supplemented by numerical simulations for
needle problem, using various growth rules~DLA, angle
screening,h model, crack approximation! on systems con-
taining up to 5000 needles. The density of needles as a f
tion of the distance to the base presents clear evidenc
log-periodic modulations of the leading algebraic decay.
have also presented a comparison with geological data
joints exhibiting approximately the log-periodic structur
What we learn by comparing these different systems, w
various growth rules, is that the spontaneous formation

FIG. 15. ~a! Joints in volcanic rocks from thermal stressin
Volcano National Park, Hawaii;~b! a road cut near Watkins Glen a
the southern tip of Seneca Lake, New York, showing joints in S
stone and shales.
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DSI seems robust with respect to significant modificatio
giving confidence in its relevance.

The basic simple picture that emerges is thatnonlinear
interactions between the unstable modes of the set of nee
lead to a succession of period doubling, the next subh
monic catching up, and eventually screening of the lead
unstable mode. The succession of these period doubli
similar to an inverse Kolmogorov cascade, explains the
istence of discrete scale invariance in these systems. We
think that short-wavelength instabilities of the Mullins
Sekerka type supplemented by a strong screening effect
vide a general scenario for thespontaneousformation of log-
periodic structures. This scenario provides, in addition,
explanation of the ubiquitous observation of a preferred s
ing ratio close to 2.

One might wonder to what extent having a discrete pe
odic structure at the beginning is essential to generate
crete scaling. Small fluctuations around this periodic str
ture do not seem to spoil DSI. This was clear in t
simulations of Sec. IV, where the intervals between cra
were taken to fluctuate in the interval@0.99, 1.01#. We also
checked in the angle screening model of Sec. III that
results were similar when we started with an array of cra
of random original lengths, which, due to screening, sho
be equivalent to having fluctuating crack intervals. For ve
large fluctuations of crack intervals, it is possible that D
might disappear. Let us observe, however, that all the kno
mechanisms leading to extensional cracking produce a re
lar periodic array of nucleating cracks. For instance, in el
tic flexure the period of the regular crack array is exac
given by the characteristic flexural length determined by
plate thickness and the elastic constants@28#. This is also
true for elastic-plastic flexure and buckling@29#, viscous
necking @30#, for instabilities in viscous or plastic layer
@31#, and for the shear lag mechanism used by material
entists @32# to explain morphologically similar patterns o
regularly spaced tensile cracks on the brittle surface of l
ered composites, which has recently been proposed to
plain the small-scale fracture patterns on the volcanic pla
of Venus@33#.

-

-
FIG. 16. Lomb periodogram of the data pre
sented in Fig. 15~b! showing a well-defined peak
at l'2.
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FIG. 17. The histogram of values ofl ob-
tained by fitting the synthetic samples construct
from the Lévy law ~A1! to a form like Eq.~2.24!.
th
o
p

be
th
ia
at

it
s

w
d
gt
io
in
n
y
e
od

h

e
ry
W

ts
e

th
e

y-
We
ith

dic

zed
om
e

n-

uld
nd

ize
ak
hibit
t

to-
e
t
tly

he
ne
uc-
se
out

the
f

For growth models, the initial discreteness stems from
finiteness of the aggregating particle. In the case of DLA
a lattice, the discrete mesh creates the initial small-scale
riodicity. For off-lattice DLA, we still have the intrinsic size
of the particles. In the cylindrical geometry, which can
directly compared to our simulations on the needles,
implies that trees are at least separated by one particle d
eter, leading again to an ultraviolet cutoff and approxim
periodic structure.

To conclude, let us mention tentative connections w
other works. In@34#, it was shown that growth processe
possess generally periodic and quasiperiodiclinear oscilla-
tions in time and space, stemming from a beating of t
length scales, here the distance between the needles an
penetration depth. In a fractal, since the relevant len
scales change as the structure grows in a self-similar fash
could this transform the periodic or quasiperiodic beat
into a log-periodic one? It would also be interesting to u
derstand how the DSI can be accounted for by the theor
DLA developed in@35#. Finally, Carleson and Makarov hav
obtained some rigorous results concerning the needle m
@36# that seem to confirm the period-doubling scenario.
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APPENDIX: COMPARISON WITH RANDOM SYNTHETIC
DATA GENERATED WITH A PURE POWER-LAW

DISTRIBUTION

In order to assess the significance of our analysis of
numerical and experimental data sets, we test it on a w
e
n
e-

is
m-
e

h

o
the
h
n,
g
-
of

el

e

r-

e

x-

e
ll-

controlled system. This is done in order to test the null h
pothesis that our results could be the results of chance.
consider random numbers generated with a power law w
density

n~y!}y2m21, m50.5. ~A1!

We chose a valuem50.5 instead ofm51.0, as the fluctua-
tions are larger in the former case and spurious log-perio
oscillations might be easier to pick up. This choice,m
50.5, also applies to the data on geological joints analy
previously @3#. We generate 100 sets of 600 such rand
numbers, all in the intervaly51–130, corresponding to th
natural cutoffs in natural observations@3#. For each sample
i , we construct the density distributionPi(y) of the 600
values ofy. Each histogramPi is fitted with a power law,
including the log-periodic corrections, using a simulated a
nealing procedure. The values ofl thus found are shown in
Fig. 17. Figure 18 shows the statistics ofx2 improvements
obtained by using the log-periodic corrections. This sho
be compared with the factor of 2–3 of improvements fou
for the needles. The histogram ofl values is shown in Fig.
19. It has a cutoff at large wavelengths due to the finite s
of the sample. It is noteworthy that no well-defined pe
singles out any frequency. Of course, some samples ex
log periodicities withl close to 2. However, this value is no
the most probable one. Longer wavelengths~smaller fre-
quencies! are observed more often. Quantitatively, the his
gram of Fig. 19 provides a likelihood function weighting th
probability of observing a given~log! frequency as a resul
of chance. The random case thus differs very significan
from the results of our simulations and the crack data.

We also carried out Lomb periodogram analysis of t
samples, with similar results. We find that approximately o
out of three samples presents significant log-periodic str
tures, as qualified by the Lomb periodogram. In the
samples with log-periodic structure, approximately one
of three shows an improvement of thex2 by a factor of at
least 2 when using the log-periodic formula compared to
simple power-law fit. We thus infer that the probability o
observing from pure chance, in asingle sample, a log-
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FIG. 18. The statistics ofx2 improvements
obtained by using a power law with log-period
corrections compared with a pure power law.
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nts
periodic structure with quality comparable to our finding f
the needles is about19. The probability of getting by pure
chance log-periodic structures with quality comparable
our findings for the needles for seven samples out of ten~the
results for our simulations on the angle screening mode
needles! is thus PnonLP5(7

10)( 19)
7(12 1

9)
3'1.831025. This

extremely small number taken at face value would imply t
our results are extremely significant statistically. Howev
we must take into account another source of error, nam
that, if the log-periodicity is genuine, the rate of success
its observation is not 100%, due to noise and statistical fl
tuations. Indeed, in our ten needle simulations, we only
serve well-defined log-periodic structures in seven out of
samples. We thus ask, what is the probability of observ
seven successes and three failures,assumingthat the log-
periodicity is genuine. We have only ten samples and
best we can do is estimate that the probability of not obse
o

f

t
,
y,
r
c-
-
n
g

e
v-

ing log periodicity when it should be there is310, our rate of
success for the needles. Thus, the probability of observ
three failures out of ten samples,assumingthe systems mus
be log periodic isPLP5(3

10)( 7
10)

7( 3
10)

3'0.27. This is still
much larger thanPnonLP.

To assess the statistical significance of our results,
standard statistical method is to use Bayes’s theorem@37#,
which allows us to quantify precisely how our belief is mod
fied by an observation or measurement. Suppose thatp quan-
tifies our initial belief in the existence of the log-period
structure in the needles: in other words,p is the a priori
probability for the log-periodic structure’s existing as
genuinephysical phenomenon. The simplest natural un
ased choice would bep5 1

2, one-half probability of being
genuine, one-half probability of not being there. If the read
is skeptical, he can choose a small value forp, saypskeptics
51023. Now, the question is: How do the measureme
-
al
FIG. 19. The histogram of the most signifi
cant peaks of the Lomb periodogram of the loc
dimension in the synthetic Le´vy sample.
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we have made modify thisa priori probability? Bayes’s
theorem states that thea posterioriprobability ppost for the
log periodicity’s being genuine is proportional to the pri
probability p times the likelihood. Quantitatively,

ppost5
pPLP

pPLP1~12p!Pnon LP
.

Plugging in the previous numbers, we find that this form
can be approximated by

ppost'12
12p

p

Pnon LP

PLP
J.

a
.

w

y

lid
ai

C

ys

ett

v

et
a

for p not too small. For instance, withp5 1
2, ppost'(1

26.7)31025, i.e., a confidence level better than 99.99
For skeptics, takep5pskeptics51023. This yields ppost
'93%, which is still quite statistically significant.

Of course, Bayes’s, theorem teaches us that it is imp
sible to convince someone diametrically opposed to a
pothesis~corresponding here to takep,1025!. However,
starting from a reasonable hypothesis~p not too small!, the
evidence we have presented strongly strengthens the cas
the genuine existence of spontaneously generated
periodic structures.
y,

y
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