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We suggest that the short-wavelength Mullins-Sekerka instability, together with strong screening effects,
generate spontaneously a discrete scale invariéD&¢ in growth processes. A signature of this DSI is the
presence of log-periodic oscillations correcting the usual power laws. This is confirmed by extensive numerical
simulations on the needle model, using various growth rid#&ision-limited aggregation, angle screening,
model, and crack approximatipon systems containing up to 5000 needles, and by some experimental data on
geological cracksS1063-651X97)04705-3

PACS numbe(s): 64.60.Ak, 05.20-y, 61.43.Hv

I. INTRODUCTION scales are selected, scaling according to a geometrical series.
A crack system is thus formed wittiiscrete scale invari-

In a recent series of papers, there has been growing exnce while at the beginning all we had was the existence of
perimental evidence of log-periodic structures decorating th@ discrete scaléhe initial crack spacing This physical sce-
main power-law behavior in acoustic emissions prior to rup-nario is depicted schematically in Fig. 1. Whether it is pos-
ture [1] and in the seismic precursory activity before largeSible or not is the subject of this paper. We note that similar
earthquaked2]. Log-periodic oscillations have also been ideas have been advanced for thermally induced cracks in
documented in the fractal structure of arrays of cracks irPrittle solids[6]. e o
geological medid3]. These log-periodic structures are the = We propose that the first ingredient in the cascade of pe-
expression ofliscrete scale invariancédSl), the property of  fiod doubling be the Mullins-Sekerka instability], whose
a system that is invariant underdiscreteset of dilatations ~Underlying mechanism is nothing else but the well-known
only. (It is crucial not to confuse DSI with the existence of a " lighting rod effect™. in the presence of a Laplacian field
discrete scale. For instance, a square lattice is a discrete sydike in electrostatics, DLA growth processes, and in tenso-
tem, but does not have discrete scale invariantimlike 'l version in elasticity, the gradient of the field concen-
continuous scale invariance, which is very common in all théfates on domains having a large curvature, therefore leading
critical phenomena of nature, DSI was considered, until rel0 their enhanced instability. As a result, the Mullins-Sekerka
cently, as the artifact of man-made, discrete fractals or hiernstability is a short-wavelengtif“ultraviolet” ) instability
archical constructions. It is not necessarily so, however. Forand the smallest wavelength allowed is always the most un-
mally, discrete scale invariance corresponds to complegtable(that there is such a smallest wavelength follows from
critical exponents, a situation which is actually possible inthe initial discrete scajeTo have a whole cascade however,
nonunitary systems like geometrical systems with nonlocalt IS necessary that the crack growth keeps on showing a
properties(percolation, polymers, and their generalizatipns Seduence of period-doubling instabilities all along the growth
or in system models with disordéspin-glasseson nonfrac- ~ Process. This, of course, is not obvious:  even if the shortest
tal lattices[4]. DSI has also recently been seen quite clearly
in the mass-radius scaling relationship of diffusion-limited- PEYY TR R TR L L T T
aggregation DLA) clusters[5].

The common aspect of the worl®-3,9 is that they can AR nnnn
all be ascribed to growth processes: the question arises of
the possible existence of a common origin for DSI in growth
dynamics. Indeed, we would like to describe here in some
detail a mechanism that seems at work quite generally in Ill III Ill II! I'I III !ll lll III III
Laplacian or diffusivegrowth processes. Consider as an ar-
chetypal example, a system of parallel identically spaced
cracks of the same length growing quasistatically under the
action of a destabilizing stress. Excluding the possibility of
branching, imagine they grow in size until a state where
every other crack stops, and the others begin to grow at a
faster rate. Imagine then that the whole process repeats itself, ]|| |l, Ill ||| |l| ]'] Ill l’l ||; ]h
so a succession of period doubling occurs. If each period
doubling occurs over a short time compared to the time be- FIG. 1. Schematic drawing of the period-doubling cascade of
tween them, a set of discrete characteristic crack lengtkhe growth of a system of parallel cracks or needles.
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wavelength is the most unstable, all the other longer wavein this case is still quite clegf5]. In addition to being a
lengths are also unstable and should grow all together, mixxeasonable approximation, needles are actually real physical
ing up the subtle period doubling. We suggest in this papeobjects, in the form of cracks. Therefore, the problem ad-
that nonlinearinteractions between the unstable modes leadiressed in this paper is of direct application to rupture phe-
to a succession of period doubling due to screening, the nextomena, dealing with objects like cracks, joints, faults, and
subharmonic catching up and eventually screening the leacarthquakes. The present work provides an explanation of
ing unstable mode. We thus have a sequence of dynamictiie value, often found close to 2 for the preferred discrete
phases in each of which a single mode dominates. After acaling ratio, as resulting from the period-doubling cascade
while, this mode becomes itself effectively unstable and theof successive Mullins-Sekerka instabilities.

mode of twice its period becomes the next dominating mode, In addition to acoustic emission and seismic foreshocks,
and so on. This picture must be taken with socaaition:  DLA, and joints, the physical situation studied here should
there are big fluctuations thatbfur” the sequence, and it have immediate applications to the flanks of oceanic ridges,
might not be so obvious either by looking at the time evolu-to the cracking of mud in deserts and dried up lakes, to
tion of the cracks, or their spatial arrangement: this will crevasses in glaciers, and to thermally induced cracks in geo-
depend on the sample. A more robust criteria for DSI will bethermal energy exploitation, as pointed out[6]. We also

the presence of log-periodic fluctuations decorating the maiexpect it to apply to more general situations in the presence

power law. of additional long-range interactions, as in the side branching
We base our conclusions on four different sets of evi-of parallel stripe ferrofluid$11] in which the Laplace equa-
dence. tion stems from the fluid incompressibility and the additional

(i) We first present a simple perturbative analysis of thdong-range force is due to magnetic interactions. It would
leading nonlinear interaction between two unstable modes. Blso be worthwhile exploring the possible application of our
shows that, if in the linear regime all wavelengths are unddeas to the various systems falling in the DLA class or re-
stable, the nonlinear interaction leads, by a screening mechésted to it, such as electrodeposition, dendritic crystal
nism, to a slowing down of the growth of the most unstablegrowth, and viscous fingering. All are variations of the prob-
one by the presence of its subharmonic. This is the precursdem of the time development of a domain which at each point
of the expected crossover to the phase where the subhaof its boundary, moves with velocity that is the gradient of
monic catches up, becomes the dominant mode, and screeits Green’s function. In this situation, instabilities of the
the previously most unstable mode. Mullins-Sekerka type can occur and it is an intriguing ques-

(iil) We then use the hodograph meth@] to tackle the tion as to whether the nonlinear interactions can stabilize the
nonperturbative multimode problem and present further evidiscrete period-doubling cascade found here. In particular,
dence of the nonlinear interaction between modes leading toe should mention that recent experiments have observed a
a sequence where the faster growing mode is found to bgpatial period-doubling instability for a regularly spaced ar-
given by the successive harmonics. ray of dendritic tips with perio@ in directional solidification

(iii ) We then present numerical simulations for the needld¢12], when decreasing the growth rate below a threshold
problem[9,10] using various growth rule€DLA rule, angle  [13]. In [13], the critical velocity at which the period dou-
screening rule, and; mode) on systems containing up to bling occurs is predicted to be a decreasing function of the
5000 needles. We analyze the density of needles as a fundendritic spacing. We would thus expect that a succession of
tion of the distance to the base and document clear evidengeeriod doubling should occur as the dendritic growth rate is
of log-periodic modulations of the leading algebraic decay. further reduced. For a small growth rate, a lot of modes

(iv) Motivated by observations in geological settings onshould be unstable simultaneously as in the needle problem
joints [3], we then present numerical simulations of quasi-we consider here and it is an interesting possibility whether
static crack growth. When taking into account all interactionsour proposed scenario for the needles could come into play
between cracks, we find a similar behavior as for the needle$or the dendrites. One should, however, be cautious because
namely, log-periodic modulations decorating the average althe condition for the validity of these calculations for den-
gebraic decay of the crack density. We also present a congrites[13] may fail at small growth rates, for which further
parison with geological data on joints exhibiting approxi- complication may occur. Indeed, the diffusion of solute par-
mately the period-doubling cascade. ticles acts as a stabilizing factor introducing a characteristic

These results are analyzed in detail, with a special emphatiffusion length, which is inversely proportional to the
sis on the possible traps in the statistical analysis of suchrowth rate. The period-doubling scenario for dendrites
elusive problems where thegnal-to-noise ratids not large.  holds when the distance between the dendrites is larger than
We thus develop synthetic tests, used as null hypothesis, the diffusion length. If the critical velocity decays slower
compare with our results. Taken together with the other prethan 14, the diffusion length becomes smaller and smaller
viously reported evidences, the result provided by ourthan the dendrite spacing and the period-doubling cascade
present analysis suggests a very coherent picture, namelstiould, in principle, continue. In the reverse case, the diffu-
thatcomplexcritical exponents are a general phenomenon irsion of solute particles will modify the physical scenario
rupture and growth phenomena. The needle problem andseyond the point where it becomes larger than the dendrite
lyzed here is a simplification of general growth processes irspacing. We leave for the future the exploration of the cas-
that branching is neglected. However, we do not expect thisade of period doubling to the problem of an array of den-
additional feature to modify our main conclusions: branchingdrites.
might make more fuzzy the log-periodic structures by adding Section Il presents our analytical calculations. Section IlI
more noise on the system. However, the numerical evidenceontains the numerical simulations of needle systems. Sec-
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tion IV presents a numerical simulation of an approximate y

algorithm for crack growth and the comparison with real z plane

geological data on joints. Section V contains our conclu-

sions. The Appendix presents an analysis of the null hypoth- | | l I | l l |

esis according to which the numerical evidence could be the x
result of chance alone. Our Bayesian’'s analysis shows that

the statistical significance of the conclusion that the log-

periodic structure is a genuine physical phenomenon is ex-
tremely high. %
Il. DISCRETE SCALE INVARIANCE IN LAPLACIAN w plane

GROWTH MODELS: SOME ANALYTICAL REMARKS

The first model we discuss is a needle model of Laplacian
growth [9,10]. It consists of N parallel, equally spaced,
needles which grow in the same direction, without branching
(we chose the needle spacing as the unit of distahet us
call ¢ the field that determines the growth of the needles.
The dynamics is determined by solving Laplace’s equation ¢ plane

A¢=0, (2.) FIG. 2. The conformal mappings involved in solving the dy-

. . . namics of parallel needles.
subject to the constraint that vanishes on the needles, and P

that ¢ increases linearlyp~Ay at large distance from the N2y N2
needles. These boundary conditions together with (Ed) W:f(g):(;(—+a
determine completely the field for a given needles configu- 2

ration. The evolution rule of the model is then given by

specifying the growth velocity of every needle according toWherea and C are real constantga|<1. In this mapping,
the unit circle of thel plane maps onto the needles of the

2IN
, (2.9

dl; . w plane. The solution of Laplace’s equation with a field van-
gp = B lim V| Va(r+ry)l, (2.2 ishing on the needles in the or z plane follows then from
r—0 the basic, obvious solutiosh=(AN/27)In|| in the ¢ plane.

The tip positions maximizev for £ on the unit circle. The

wherer; is the position of thath needle tip. Equatiof2.2) Yalues of the two needle lengths in theplane follow
a

expresses that the growth velocity is proportional to the tot
flux of incoming particlegin the language of DLAor to the r_ 2IN ' 2IN
. . . . = + , = — , .
stress intensity factor in the language of crack mechanics Li=C(1+a) Lo=C(1-2) @9
g:;.e) model corresponds exactly to the antiplane crack probénd thus in the plane
1 N 1
A. Exponential screening leﬁ In C+ p In(1+a), LOZZ C+ pu In(1-a).

This system is very well knowfi10], but we wish to (2.6
remind the reader of a few results that are relevant for what . ) .
follows. Let us callz the plane of the needles, withalong ~ From Eq.(2.2) and with _Eq.(2.4),2the fle|d2$ E}tl/tzhe two tips In
the needles basis arydparallel to the needles. The problem theW plane are proportional fod“f(£)/d¢*]~**[10], yield-
can be mapped onto a similar problem of needles growing if"9

a star pattern in thev plane(Fig. 2) through the mapping Eloc(14a)Y2- 1N, Elo(1—g)l2-IN 2.7
1 1 0 ’ .

2i
w=exp — -~ Z/- (2.9  with a ratio
. . o = L\ (N-2/4
Needles in thew plane now point at angles differing by _0:(_0) ) (2.9
27/N and their length i$; =exp(2r;/N), as can be seen by E; \Li

inserting z,=j+il; in Eq. (2.3). By observing thatd, ¢ . o .
=[1MW'(2)]9,4, a realization of needle dynamics in tae Getting back to the origina plane, we get the screening for
plane maps onto a realization of the dynamics invhglane. ~ Our problem of parallel needi¢45]:
The feature we want to illustrate heresisreening To do E L\ (N-6)ia 3
. . . o ko
so, consider now a case with needles of alternate lengths; _0_(L_?) =ex;{(—— —)(Lo—Ll)}. 2.9
1

l,i+1=L, andl,;=L,. By one more conformal mapping, we E,
can map the exterior of the unit disk in a third complex

plane, call it the/ plane, onto the exterior of the star-shapedFor N large, the second term in the exponential is negligible.
object formed by thé\ needles in thev plane througH14]  SettingL;—Ly=A>0, the difference in height, we have

2 N
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Eo T front velocityv =V ¢, leads toy— 2y. In this caricature, one
E.en 5 Al (210 would imagine that the needles evolution therefore looks
! something like Fig. 1. Such a pattern obeajiscrete scale

establishing that the screeningesponential This is the first ~ invariance Let us stress that, in this schematic reasoning, the
ingredient in the problem: height differences lead to a veryPresence of a short distangaitraviolet cutoff is crucial to

strong screening and needles of smaller size are very quick§NPose the existence of a highest spatial frequency mode.
left behind. This argumentation has weak points, the main one being

that events do not happen sequentially. Rather, under a ran-
dom perturbation, all modes start growing and interfere, with
each other, spoiling to some extent the foregoing picture. To
The second key ingredient concerns instabilities. Toyhat extent exactly do they spoil it?
handle these, let us replace the needles by a continuous array.
Results obtained by keeping a discrete array would be more
complicated but contain the same physics. We describe the o o . ) ]
interface by its coordinatg;(x,t) subject to the evolution ~ While it is very difficult to answer this question rigor-

B. The Mullins-Sekerka instability and possible DSI scenario

C. Two mode nonlinear coupling

equations ously, we can at least provide some interesting arguments.
Since in the naive discussion, we were led to consider modes
A¢p=0, k andk/2 growing successively, let us now study a perturba-
(213 tion with both of these modes in competition. For notational
v=Vo. convenience we sé&k=2a. A perturbation of the interface

then looks like
Again, the boundary conditions ak®=0 on the interface,
and¢~Ay at large distance from the interface. The Mullins- Yint(X,1) =Yo(t) + e(t) sinax+ u(t)cosax.  (2.14
Sekerka 7] instability corresponds to the fact that perturba- o o
tions with higher spatial frequencies are more unstable: V€ assume that initiallg<u such that the subharmonic is

perturbation of the interface of the form initially of very small amplitude and provides a perturbation
on the growth of the main mode. We also take both param-
Yint(X,1) = Yo(t) + &(t) sinkx, (2.12  eters much smaller than 1. We write similarly the solution of

Laplace’s equation as

d=ALy—Yo(t)]+ n(t)sin(ax)e*awfyo)
dé

i —Aks. (2.13 + p(t)cog2ax)e 22V 7Yo) +¢(t). (2.15

grows, indeed, likg14]

, , , , [ = = . We will k
For a continuous interface, our model with no short dlstanc%te:;szsfyoﬁge(;:i%k /tLhaZZ grgg)e;LpThoe(gzpanseion of eefp?o-

f‘gttogfc‘ggruIgi?rilgrwbaercb;lﬁgIi’#g{gﬁ(sségugl?cgc;:P;g?:ﬁsi nentials generates higher harmonics; what we will do for the
’ y oment is simply neglect those larger thas, 2.e., project

that we neglected so far, or because there is another natur to the two modes we started with. The express<R5

short_dlstance ?UtOﬁ’ €9, th.e needle. spacing in the pmble@olves automatically the Laplace equation. Writing that Eqg.
we discussed first. Let us reinstall this distawceThis dis- (2.15 satisfies the boundary conditiofi(y;(x.t)=0 al-
tance defines a Brillouin zone, and associated with it is EfoWs us to gety andp as a function ofe an(‘;‘; ,Computing
maximum meaningful wave vectdr=/d. One is tempted the gradient of¢ at the interface and using it to get the

I ronechre a1t e dscite needles Brobem, Mieriace velocty () and centyng 1 componen
cascade Indeed, an extra simplified picture of the interfacead)/ay'yim with dyi/dt gives the equation of evolution of

growth would be that, under random perturbation, the mosth® @mplitudes: and .. of the perturbations
unstable modgthe one with highest spatial frequendy,

=/d) grows first: this corresponds to every other needle %:AanLAazeM,

becoming a bit longer. Following then the discussion in the d (2.16
first part of this section, a strong screening takes place. As- ‘
sume that the shortest needles are screened so much that they du a’e’

actually stop growing and do not influence further growth of E‘ZAa'“_A o

the longest ones. Then we are back to the original situation

but with a needle spacing twice as higz—~2d. One then The first term in each of these equations is the standard
expects that the new most unstable mode, now Withk/2 Mullins-Sekerka instability. From it we see that the highest
starts growing, bringing us back to the previous situation(spatia) frequency modeéhereu) grows faster in agreement
with, however, arescalingby a factor\ =2. This rescaling with Eqg. (2.13. What we see also, however, is that the
corresponds so far to properties along thexis, i.e., parallel growth of e slows down the growth gf.. Hence for an initial

to the needles basis. However, from the equations of motiorfluctuation withe<<u, e might overgrowy in the long run.

it is easy to see that this rescaling should also be observed In other words, while the perturbation at wave vedtas the
they direction. Indeed, Eq.2.13 shows thak—k/2 leaves most unstable, it is indeed replaced k{2 in the long run,

the equation invariant fot—2t, which in turn, from the like in the naive discussion. Of course, this works only
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within the approximatiori2.16), that is, only fore at most of 10’
the order ofx and both much smaller than 1, so this is not
enough to conclude.

D. Use of the complex hodograph method

To go beyond this perturbative analysis, we now use the
complex hodograph methd@]. Associated with the forego-
ing field ¢ we introduce the analytic function

D (2)=(X,y) +i(x,y), (2.17)

where analyticity requires,¢= —dyi, dyd=dyis. Briefly,
the hodograph method consists in looking for the solution of
the Laplace equation in terms Bfy as a function of¢$ and

amplitude

. Introduce the width of the systeW, such that the inter- o o5 1 s 2 25 3 a5 4

face is defined fox e[ —W/2,W/2] (in the discrete model,

W=N in units where the needle spacing is Then, it is FIG. 3. An example of dynamics for an interface perturbed by
possible to parametrize the complex coordinates of the interfour harmonics, as determined using the hodograph methaa.
face by The initial values of the amplitudes a®,=1, C;=0.001, C,

=0.08,C3=0.15, andC,=0.25.
Zin(s,t), se[—AWI2,AW/2], (2.18
four-dimensional space, which is complicated. We have not
seen any clear pattern emerging, except that if we start with
C,1<€Cy<k(C3<k(Cy<Cy, C, ultimately overgrowsC,, and
% % . . then C; overgrowsC,, while C5 remains almost constant
Zind($,1) 9Zind(,1)" — 0iZimi(S, 1) (9Szim(s,t)——2|(.2 19 (an example is shown in Fig.)3.3Moreover, this behavior
' extends all the way to the region whe@g~C,~C3~C,
Expression(2.19 writes the growth condition=V¢. Itis  <Cp. This supports the naive picture; however, it is also
now possible to find an exact solution to the equations opossible to find rare initial conditions such that ultimately it
motion, with again the velocity of the interface being givenis C,, C3, or C, that overgrows the others,
by the gradient of the fielgs. A solution based on two har- It is not clear to us how to go further. Of course, we are
monics follows from really interested in the limit of an infinity of needles, and
therefore a random perturbation would decompose on an in-
.S i Y finity of modes. Even if sometimes the sequeikeek/2 is
Zi(S,1) = Co(D) +i £+ Ca(D)e S Cyt)e A, spoiled by some special conspiration of amplitudes, never-
(2.20  thelessin most cases it will occur, so if the perturbation is for
some time dominated by a wave vector that does not

with the conditions thavz(s,t) is analytic and nonzero
within the strip[ —AW/2,AW/2] and tha{{8]

and the equations of motion are belong to the initial sequence, this one can nevertheless be
. . . the ancestor of a new sequerce-k’/2 and so on, presum-
Co—aC,C;—2aC,Cr=A, ably preserving DSI.

C1—aC,C—alCy—2aC,C,=0, E. Signatures of the period-doubling cascade
C2—2aC0C2=0. (2.21) Our purpose so far was mostly to point out that DSI was
a worthwhile hypothesisin the needle growth model. We
On this solution, it is easy to check numerically that éoy think there is enough evidence that it might be there to ac-
initial amplitudesC,(t=0), C,(t=0), it is C, that domi- tually investigate the question numerically in some details.
nates at large times. Let us now recall some standard results for the needles
Another key weakness of the naive argumentation is tha@rowth. Introducen(y) the number density of needles ex-
it focuses on the sequence with discrete scalingremities, such than(y)dy is the total number of needles
k—k/2—k/4, etc., neglecting other modes that might well Whose extremities are ifly,y+dy]. There is a number of
spoil this discrete scaling, like for instancé/a. To see theoretical arguments confirmed by numerical simulations
whether the discrete sequenc2" 1 —k/2" is indeed “in-  that lead to the following asymptotic forfi16,15:
sensitive” to these other modes, let us consider, setting

) -2
=4a, a solution of the form n(y)ecy =, y—oe,

4 where the limity—o is taken after the limiN—o, N the
z(s,)=Co(t) +i —+ E C/(he IsaA (2.22 number of needles. The discrete scale invariance, if it is in-
e = A= deed generated by the dynamics, would lead to corrections of

the form[4]
Equations are much more difficult to solve, and the final

behavior has to be studied for initial conditions defined in a n(y)cy [1+A codw In y+¢)]



6438 Y. HUANG, G. OUILLON, H. SALEUR, AND D. SORNETTE 55

if the needles set was really a discrete regular fractal. How- . ’

ever, even if DSI settles in, this can only occur with fluctua- \

tions. By analogy with the case of a random discrete fractal, v o/

where the rescaling factor fluctuates at every renormalization ” *F\ 8

iteration[4], the previous formula should be replaced by / (\ » \
N

n(y)=y 1+Ay “cogw Iny+¢)], (2.23 SR U 25 IS N _\V___ .

wherea depends on the fluctuations of the rescaling faktor ' ! ’
w=2w/In \, where\ is an “average”[4] of the rescaling | l ' L
factors. From the above discussion we expeet2.

Now, a form similar to Eq(2.23 has been recently found FIG. 4. Growth rules for the angle screening model.
in DLA, with n(y) replaced by the mass density at distance
r from the center of the cluster. Actually, a surprise of theing model[19]. To simulate it, we start with an array of
studies in[5] is thattwo periods occur with comparable am- needles of random arbitrary heights. We then let each needle
plitudes in Eq.(2.23, corresponding ta.~2 and\~4. Itis  grow according to the following rule. For a given needle,
important to stress that the latter is not a sort of “harmonic” look at the maximum left § ) and right r) screening
of the former. Indeed, in a discrete regular fractal, invarianngle determined by all the other need|E®. 4). We define
under scale transformations with generator\x, the al-  the “open view angle”a to be
lowed values ofw would be of the forrn(2#/In \) corre-
sponding to successive roaks™ of \, not integer powers. a=m= 6~ 0r, @D
Moreover, the successive harmonics WOU'|d decay EXponeéine growth rate is then taken to be proportional to this angle
tlally fast. The presence of the two terms in DLA was act_u-a’ normalized byr up to some power; (7 mode),
ally interpreted by saying that the discrete RG transformation
appropriate for DLA, i.e., the one of which DLA is the in- a\”
variant measure, is made of two portions of straight lines v“( ) )
with respective slopes\ and A2, leading to a log-

“quasiperiodic” behavior[17]. This is quite far from the g4 the highest needle has the greatest growth rate, i.e., in-
naive picture we proposed earlier, and surely there is a bigreases by one unit each step, while shorter ones have a
theoretical gap to be filled in to explain this phenomenon. Bysmayler growth rate. This is supposed to simulate the screen-
simple analogy with DLA, having in mind that DSI is pro- g effect. Intuitively the chance for one needle to get some
duced by the same mechanism in both problems and th@jtside material necessary to its growth is proportional to the
DLA branching is irrelevant for that matter, we thus 100K 5rea enclosed in this open view anglePeriodic boundary

(3.2

T

more generally for an expression of the foff4] conditions have been used in the computation of the growth
rate at every step.
n(y)xy?2 1+2i Ay~ %icogwiiny+ ¢ |.  (2.24 The results for the exponent of the second model are

known to be much better and very close to the theoretical
value. We have generated ten sampledNef3000 needles
A similar expression with an exponentl would hold for  for »=1. We have usually let this sample grow until the
the cumulative quantityN(y), the number of needles of highest needle reaches the heitshtin this case, the system

height greater or equal tp. having comparabla andy sizes can be expected to repro-
duce fairly well the asymptotic regime in which we expect a
1. NUMERICAL SIMULATIONS dependence like Eg2.24 to hold. For each sample, we
) have first considered the integrated quanhiiyy), the num-
A. The angle screening model ber of needles of length greater than or equay.té\t small

The most efficient way of simulating the Laplacian and largey, it is expected to behave in a nonuniversal way.
growth model is by using random walkdrs8]. We release For smally, this is because the asymptotic behavior is ex-
them from the top of the system and let them move at ranpected to hold only for large. For too largey, this is
dom until they approach the needles. If a mover touches thbecauseN is finite, so the region is very badly sampled. On
side of a needle, it then disappears and another one is geavery sample, there is a region close enough to the
erated. If the mover passes through the empty site immedasymptotic regime. This can be checked by plotting the loga-
ately above the top of a needle it sticks to it, and the needlgthm of N(y) as a function of Iry (we use herelecimal
height increases by one unit. This model does not give spedogarithmg and finding the region where the plot is well
tacularly good results. The reason is presumably the presene@proximated by a straight lingee Fig. 5 for an example
of logarithmic corrections to scaling, as argued[ib]. In  This region somewhat varies from sample to sample, but is
fact, even for very big systems, the exponentngf) is  always aroundy e [150,270Q. That we are close to the
poorly reproduced. We will present results for this modelasymptotic regime is checked by the value of the exponent
later on. that fluctuates from sample to sample but is always found in

To start, we will also use another model that is supposethe regionme [0.96,1.04 (the exponent is much better than
to be in the same universality class, but probably has neglin the Laplacian model, probably because the logarithmic
gible logarithmic corrections. This model is the angle screeneorrections have a much smaller amplitudd-or this
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FIG. 5. A typical example of the cumulative distributidi(y) FIG. 6. The local dimensiol(y) obtained as the local loga-

of needle lengths for the angle screening model, together with th@thmic derivative (3.3) of N(y) shown in Fig. 5. Note that the
best fit using a power law. The corresponding exponent is 1.0254ygcillations are much more visible.
very close to the asymptotic value 1. Regular oscillations are clearly
visible.
d InN
D(y)= diny’ (3.9

asymptotic region, one usually identifies oscillations around
the straight line that can be fitted by formuta23 [we do  and according to Eq2.24) it should go like
not yet consider Eq(2.24), which would involve too many
fitting parameters heteSeveral methods of fit are possible; e
in particular, one can fiN(y) or its logarithm. The latter D(y):—1+2 Ay~ “icogwilny+¢y). (3.4
case seems to reproduce more stable results. Out of ten
samples, seven values @f=2/In \ (In is the decimal loga-  The functionD(y) for a typical sample is represented in Fig.
rithm) are in the regionw e [8,12] (corresponding tox 6, where regular oscillations are clearly visible. Since we
e [3.3,6.0, with three values very close taw~10.4 expect the two main values @ to play comparable roles,
=2m/ln4 (A=4), one value was about twice as big rather than doing a fit of this form, it is much better to look
~21 (\=2), and two values were much lower, with<5 at the Fourier spectrurtin variable Iny) of D(y). This was
(A>18), and probably not significant. Indeed, several thingglone by a variety of techniques, in particular the Lomb pe-
have then to be noticed. First, the range of valuey oie-  riodogram, to get rid as much as possible of the effect of the
fines an interval in logarithmic scal& In y=Iny./Ymin,  damping termy”~« in Eq. (3.4). As in [5], we represent the
with a value A Iny=1.2, corresponding tav=5.0. Any results of this study by considering histograms of the peaks
value of w lower than this cutoff corresponds merely to fit- of the Fourier spectrum. Since we do not have a large num-
ting the finite sample size and cannot be considered signifiber of samples, we present the results in a manner most
cant, ruling out two samples. For the remaining significantsuitable to get rid of the noise. We thus only consider the two
values ofw, the 2 is improved by a factor between 2 and 3. main peaks of the periodogram for each sample. From the set
On a typical sample, as in Fig. 5, it is also clear that otheiof these peaks, we construct their cumulative distribution,
frequencies are relevant, corresponding to roughlyawo  and then smooth it. Its derivative then provides the density
times bigger. probability to obtain a given frequency in Fourier space. The

At this stage, it is useful to stress that we are looking forresult is shown in Fig. 7. This histogram is defined on the
a rather elusive quantity. The amplitude of the log-periodicinterval €[ ®min,@max] Where oygi,~5 (A~18) is deter-
term is expected to fluctuate from sample to sanjgl®].  mined by the size of the sample, ang,,~35 (\~1.5) is
Moreover, the values ab are also expected to fluctuate from determined by the typical distance between sample points.
sample to sample, in a way that can be handled in simpl¥Ve observe three peaks in this histogram, corresponding,
models[4], but is largely unknown here. For comparison, werespectively, to values\=3.7£0.4, A\=1.9+0.2, and\
perform in the Appendix the same analysis for random num=1.4+0.3. The peak ah=~2 is clearly significant, being
bers generated following a power-law distribution with the well away from the small and large cutoffs. The other two
same exponent 1. In other words, we test the null hypothesigeaks are unfortunately quite close to our cutoffs, and it
that the log-periodic oscillations could just be due to normalmight be safer to discard them as nonsignificant. However,
fluctuations in a power-law distribution. In the Appendix, we we observe that the first peak is close to the value4 of
are able to reject this null hypothesis at an extremely higtthe DLA case. Also, the third peak is close xe=v2, and
confidence level. could well be interpreted as a harmonic.

To get more precise information, we have constructed, Finally, as was observed in the DLA cafg|, we have
like in the DLA casd 5], the “local dimension.” This quan- checked that the oscillations disappear when quantities such
tity is obtained by asN(y) are averaged over the ten samples—what remains is
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FIG. 7. The histogram of the two main peaks of Lomb peri- FIG. 9. A typical example of cumulative distributidd(y) for
odograms performed ob(y) for ten samples. the random-walker algorithm.

simply noise decorating the simple power law. We think that )
this is due to random dephasing of the log-periodic oscilla°n€ does not expect too good results anyway due to logarith-

tions due, in particular, to finite size effects as discussed iffic corrections 15]. Figure 9 shows the cumulative distri-
[4]. Since most authors considered only averageN(g) to butionN(y) of a typical sample, and Fig. 10 the correspond-

get a better statistics, they could not observe the log-periodit'd local dimensionD(In'y). The log-periodic oscillations
are nevertheless clearly visible, wikh=2. We have not tried

oscillations. ally Vi )
to get a strong statistics in this case as the DLA case has
been treated extensively with very large statistic§ghand

B.  model . .
o o _ the random-walker algorithm for the needle problem is
We have performed a similar analysis in a variant of thehound to perform poorly compared to the angle screening

model where the screening goes as a power of the screenifgodel.

angle. We present the results obtained fo¢ 3 (=1 pre-

viously). For an unknown reason, the asymptotic region ap- IV. A MODEL OF CRACK GROWTH

pears smaller in that casg,e[700,280Q. The exponent
changes and we find a valuel.25+0.15 instead of 1 pre- The previous study deals with a rather idealized situation.
viously for »=1. The same analysis was performed forAs we expect the generation of discrete scale invariance to

D(Iny), leading to the histogram of frequencies shown inbe universal in the same sense as critical exponents are, and
Fig. 8. We observe a slight shift towards higher frequenciedo depend only on general properties, here instability and
but the pattern is totally consistent. screening, it is useful to generalize our study to more realis-
tic models that can be compared to experiments. We thus
C. Random-walker algorithm revisit the crack problem in which the cascade of period
doubling was first envisioned for thermally induced cracks in

For the original random diffusion model, the simulation pyitile solids[6].
takes a much longer time. Moreover, as commented above,
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FIG. 10. The local dimensioB(y) obtained as the local loga-

FIG. 8. The histogram of the two main peaks of Lomb peri-
rithmic derivative(3.3) of N(y) shown in Fig. 9.

odograms performed oB(y) for the » model for »=0.5.
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A. Single crack growth thus grow faster, eventually stopping the smaller crack. We

Consider the problem of crack growth in antiplane stressN@ve discussed this phenomenon in Sec. Il. Generalizing to
nany cracks, the mechanical literature uses finite or bound-

In the case of a remotely applied antiplane shear stress aff! . 7
plied at infinity in a plane parallel to the/(z) plane, both the &1 element method4], or various approximation schemes

displacementi, and stress field-,, obey Laplace’s equation: [25]. Here, we Investigate a system of thousands of cracks
this situation is known as “antiplane” stress and reduces thé'md thug need an eff|C|e_nt a_lgorlthnj. This can only t_)e ob-
tensorial elastic equation into a scalar problg2a]. In the  t@ined with some approximation, which we now explain.
presence of a crack of lengtla2 parallel to the shear plane, The_ a;,),p.roxmat!on we use Is th.e pairwise “double-
the previously uniform stress field is modified so as to obe)f'catte”ng mteractlon_ scheme_. Consider a crack Of. Iength
Laplace’s equation with the boundary condition of vanishing®L parallel toy atx=0 in a.med|um where the stress field is
stress on the crack edgi@d]. As a consequence, the stress isorlgmglly uniform. Near this qrack, the stres's field becomes
reduced near the crack edges, but is enhanced at the cra@Rnuniform, and we denote it by, (x,y). It is calculated
tips and the growth occurs there. Ideally, there is a stresexactly by conformal techniques. Introduce a second crack of

singularity at the cracks tips, which is the exact counterparteNdth @, at a distancex from the previous one. The pair-
of the one found for the gradient of the field in the needle"ViS€ doublg—scat_terlng approximation consists in calculating
model. In the mechanical literature, the stress intensity af'® Stress intensity factor of the second crack as

crack tips is described by the so-callgtdess intensity factor

noted asK. The growth of cracks is controlled y. The K,= 2 J'az a1(X.y) dy
stress intensity factor depends on the intensity of the remote Jma, Jo [1-(y/a)?1"* ™"

applied stress, on the geometry of loading, and on the crack

length. The intensity of stresses in the region near the cracjhere o (x,y) is the foregoing stress field in the medium

tip is proportional toK. For the general case where the due to crack 1 only. Similarly, the stress intensity factor of
stress field o(x,y) is nonuniform but symmetric crack 1 is estimated by

o(x,y)=o(x,—y), one had22].

4.2

2 (a oy(0y)
2 [u_ o(0y) _ )
K= - fol[l_(y/al)z]mdy' (4.2) Ky T o (1= (y/ay 7 9%

. _ ) where o,(X,y) is the stress field that would exist due to
which reduces to the well-known relationstip=ovma, in crack 2 only. Notice that the stress field is modified once by

the uniform case. Classical brittle fracture mechar_1i_cs i$ne crack, which is then applied to the other crack, hence the
based on the fact that as longlashas not reached a critical (arm “double scattering.” We can summarize this approxi-

value K., the crack remains staple. K becqmes greater mation by writing
than K., the crack propagates, in general in an unstable

manner, with a velocity equal to a fraction of the speed of

sound, leading ultimately to the total breaking of the me-

dium. However, a lot of experimental evidence that has been 0. ) ) o
rationalized theoretically shows that a crack does not remaiWhereK;' is the stress intensity factor of crackn the ab-
stable, even below [23]. This is the so-calledlow crack ~Sence of crack, for a homogeneous remotely applied stress
growth regime. This growth is thermally activated and de-o- C! is a correction factor that expresses the actig) of
pends on the chemical properties of the fluids that can fill th&rackj on cracki.

crack leading to corrosion-assisted crack growth. In this re- For N parallel cracksk=1,... N, we make an additional
gime, which is the most often encountered practically, theapproximation that the stress intensity factor of a criackn
crack tip velocity is found to be proportional #™ with m  be written as a product of multiplicative corrections

ranging from 2 to 60 depending on the material and condi-

tions. In the ideal limit of a dried vacuum, the thermal fluc- N

tuations prevail and theoretical analysis shows that, at suffi- Ki= KiOH C:(,

ciently small stress, the crack tip velocity is proportional to k=1

K. This is exactly the growth law2.2) used for the needle ) ) )
problem studied above, since limp\T|V ¢(r +r;)| is noth- ~ €ach of the correction factoS; being calculated using the

ing but the(stress intensity factor. They model would then ~ Pairwise double-scattering scheme. Note that, for small cor-
correspond to the more general situatios 1. rectionsCK close to 1, this multiplicative scheme is the same

as the alternative additive one, up to first orde€fh 1. The
additive scheme provides, in general, a lower bound and is
unable by construction to account for cooperative effects.
Consider two parallel cracks with their centers along theThe present multiplicative scheme mimics the nonlinear co-
x axis. The computation of the stress intensity factor of eactpperative behavior of multicrack assemblies.
crack in the presence of the other one is a difficult task. Each At each time step, we calculate the stress intensity factor
stress intensity factor is, in general, smaller than its valudl; of each crack according to these equations and increase
when isolated, exemplifying again the effect of screeningeach crack length by an amount proportionalkip. This
The larger of the two cracks will be less screened and willamounts to using themm=1 growth law.

4.3

Ki=K°C!,

B. Crack interactions
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C. Results of the growth of a population of cracks Notice that one can almost see with the bare eye the pre-

Using the previously defined model, the log-periodic os-ferred scale ratio 2 in the crack lengths. Figure 12 shows the
cillations are strikingly more visible than for the previous density distribution of crack lengths obtained for a typical
simulations for the needle problem. This is probably due tgsimulation. A power-law behavior is found over more than
the fact that our approximation scheme enhances the growtfiree decades, with an exponent again equal to 2, in agree-
of large cracks in comparison to small cracks and thus botinent with the lawn(y)y 2 found for needle$16,15. In-
the instability and screening mechanisms. deed, since we use here antiplane elasticity, the problem is
We simulate 5000 cracks, of initial length randomly cho-scalar and is in the same universality class as the initial
sen between 0.49 and 0.51. The spacing between two crackeedle problem. Figure 13 presents the difference between
is also chosen randomly in the interyl99; 1.01. Periodic  the data and the linear trerfth log-log plot, qualifying the
boundary conditions are introduced alo@x. The compu- power law. Very clear oscillations can be observed. Figure
tation stops when the largest crack reaches a length equal i@, shows the Lomb periodogram, which suggests the exis-
one-third of the size of the system, corresponding to a lengttence of a single peak at=2 precisely. We performed six
approximately equal to 1666. The density distribution ofrealizations of these simulations and observed that the expo-
crack lengths is then computed using a logarithmic binninghent is very close to 2 (1.990.01). The dispersion in the
introduced in 3], which is optimized for power-law distribu- discrete scaling ration is found to be larger: A=2.25
tions. Figure 11 shows the 5000 cracks that have grown*0.3.

FIG. 12. Density distribution of crack lengths
obtained for a typical simulation.

log,o(probability density)

log,o(length)



55 SPONTANEOUS GENERATION OF DISCRETE SCAL .. 6443

02 ¥

0.15

0.1

005

FIG. 13. Difference between the density dis-
4 tribution and the simple power-law behavigin-
ear in log-log plot, showing the(log-periodig

-0.05

Residue

0.1 . oscillations.
015 - 1
0.2 F E
-0.26 [— k
_0'3 L ] (] A
0.5 1 16 2 25 3
D. Real geological cracks cussed irf26]. The mechanism whereby cracks grow and are

In addition to the evidence presented[Bl, we present selected,_ with only a few finally “surviving”_ at lengths as
other data found for cracks in rockalso called joints in the large as in Fig. 11 has also been noted for jo[2{. How-
geological literaturgin Fig. 15. In Fig. 1%a), the joints are  €Ver, the period-doubling mechanism studied in the present
presumably formed under thermal stressing upon cooling dP@per has not been pointed out. It is also noteworthy that the
volcanic rocks in Hawaii. We can see with the bare eyeScreening and instabilities, the two key ingredients for the
evidence of size ratios 1:2:4 approximately. This situation istPPearance of the period doubling, are as effective in the
probably close to the one analyzed[8]. The other data set Scalar(needlg problem as in the tensorigtrack case.

shown in Fig. 1%) has been sampled at a road cut near

Watkins Glen at the southern tip of Seneca Lake, New York. V. CONCLUSION

We do not know the stressing conditions, only that the joints

correspond mainly to mode | cracks working in the opening Motivated by evidence of discrete scale invariance, in the
tensile mode. Figure 16 shows the Lomb periodogram of théorm of log-periodic oscillations, from simulations on diffu-
data set of Fig. 1) [15(a) contains too few cracksshow-  sion limited aggregatiof6] and from crack datg3], we have

ing good evidence of discrete scale invariance with a preperformed an analysis of a simplified model of DLA, the
ferred scaling ratio close to 2. The realization that screeningeedle problem, which has also direct application to crack
is important for crack propagation in basalt has been disgrowth. Based on perturbative analysis and some exact re-
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FIG. 14. Lomb periodogram of the data pre-
sented in Fig. 13 showing a well-defined peak at

or 1 A=2.
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DSI seems robust with respect to significant modifications,
giving confidence in its relevance.

The basic simple picture that emerges is thanlinear
interactions between the unstable modes of the set of needles
lead to a succession of period doubling, the next subhar-
monic catching up, and eventually screening of the leading
unstable mode. The succession of these period doublings,
® similar to an inverse Kolmogorov cascade, explains the ex-

istence of discrete scale invariance in these systems. We thus
ll’I' “fw I]"

o} 50cm
| FPS— |
Surface of Lava Flow

think that short-wavelength instabilities of the Mullins-
Sekerka type supplemented by a strong screening effect pro-
vide a general scenario for tlspontaneouformation of log-
periodic structures. This scenario provides, in addition, an
explanation of the ubiquitous observation of a preferred scal-
ing ratio close to 2.

One might wonder to what extent having a discrete peri-
odic structure at the beginning is essential to generate dis-
crete scaling. Small fluctuations around this periodic struc-
ture do not seem to spoil DSI. This was clear in the
simulations of Sec. IV, where the intervals between cracks
were taken to fluctuate in the interv{d.99, 1.0]. We also

FIG. 15. (a) Joints in volcanic rocks from thermal stressing, checked in the angle screening model of Sec. Ill that the
Volcano National Park, Hawaiip) a road cut near Watkins Glen at results were similar when we started with an array of cracks
the southern tip of Seneca Lake, New York, showing joints in Silf-0f random original lengths, which, due to screening, should
stone and shales. be equivalent to having fluctuating crack intervals. For very

large fluctuations of crack intervals, it is possible that DSI
sults from the hodograph method, we have suggested that tieight disappear. Let us observe, however, that all the known
two basic ingredients leading to DSI are the short-mechanisms leading to extensional cracking produce a regu-
wavelength Mullins-Sekerka instability and the stronglar periodic array of nucleating cracks. For instance, in elas-
screening of competing needles. These analytical resultsc flexure the period of the regular crack array is exactly
have been supplemented by numerical simulations for thgiven by the characteristic flexural length determined by the
needle problem, using various growth ruld3LA, angle plate thickness and the elastic constg28]. This is also
screening,» model, crack approximatioron systems con- true for elastic-plastic flexure and bucklif@9], viscous
taining up to 5000 needles. The density of needles as a funaecking [30], for instabilities in viscous or plastic layers
tion of the distance to the base presents clear evidence ¢81], and for the shear lag mechanism used by material sci-
log-periodic modulations of the leading algebraic decay. Weentists[32] to explain morphologically similar patterns of
have also presented a comparison with geological data oregularly spaced tensile cracks on the brittle surface of lay-
joints exhibiting approximately the log-periodic structure. ered composites, which has recently been proposed to ex-
What we learn by comparing these different systems, wittplain the small-scale fracture patterns on the volcanic plains
various growth rules, is that the spontaneous formation obf Venus[33].

50 cm

L

*

50 cm

(b)
~Limit of exposure

Vertical Propagation Direction

60 T

] FIG. 16. Lomb periodogram of the data pre-
sented in Fig. 1&) showing a well-defined peak
ata~2.

Lomb amplitude
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For growth models, the initial discreteness stems from theontrolled system. This is done in order to test the null hy-
finiteness of the aggregating particle. In the case of DLA orpothesis that our results could be the results of chance. We
a lattice, the discrete mesh creates the initial small-scale pe&onsider random numbers generated with a power law with
riodicity. For off-lattice DLA, we still have the intrinsic size density
of the particles. In the cylindrical geometry, which can be
directly compared to our simulations on the needles, this n(y)cy ™1  m=0.5. (A1)
implies that trees are at least separated by one particle diam-

eter, leading again to an ultraviolet cutoff and approximatgy/a chose a valuen=0.5 instead ofn=1.0. as the fluctua-

pefl'_Od'C strluc;urel. : . _ . htions are larger in the former case and spurious log-periodic
o conclude, let us mention tentative connections withjjjations might be easier to pick up. This choigs,

other works. In[34], it was shown that growth processes _ 5 5156 applies to the data on geological joints analyzed

POSSESS _generally periodic and quasiperidtdiear QSCi”a’ previously [3]. We generate 100 sets of 600 such random
tions in time and space, stemming from a beating of tWOnumbers, all in the intervaj=1—130, corresponding to the

length scales, here the distance between the needles and %ural cutoffs in natural observatiofi@]. For each sample

penetration depth. In a fractal, since the relevant length we construct the density distributior;(y) of the 600
scales change as the structure grows in a self-similar fashiog’alues ofy. Each histogran®; is fitted with a power law
. i ,

icncilcj)li Tglgs ;;?ir;sgioc rrgnteh,)eItp\?vg?]?éca?sroqgj:‘ci"rﬁz:'eosdt:ﬁgbg)amgincluding the log-periodic corrections, using a simulated an-
] X “nealing procedure. The values »fthus found are shown in
derstand how the DSI can be accounted for by the theory gp

: . ig. 17. Figure 18 shows the statistics pf improvements
DLA_deveIoped |_r{35]. Finally, Carleson ‘?‘”d Makarov have optained by using the log-periodic corrections. This should
obtained some rigorous results concerning the needle mod

. : 4 . b compared with the factor of 2—3 of improvements found
[36] that seem to confirm the period-doubling scenario. for the needles. The histogram »fvalues is shown in Fig.

19. It has a cutoff at large wavelengths due to the finite size
ACKNOWLEDGMENTS of the sample. It is noteworthy that no well-defined peak
Y.H., G.O., and H.S. were supported by the DOE, thesingles out any frequency. Of course, some samples exhibit
NSF (through the National Young Investigator progiam log periodicities withk close to 2. However, this value is not
and the Packard Foundation. We are grateful to J. V. Anderith® most probable one. Longer wavelengtsmaller fre-
sen, V. Hakim, J. Rudnick, and C. G. Sammis for Veryquen0|e$§1re observed more often. Quantitatively, the histo-
stimulating discussions at the early stages of this work. wdram of Fig. 19 provides a likelihood function weighting the
especially thank C. Sammis for pointing out RE§] to us,  Probability of observing a givefiog) frequency as a result
and J. Rudnick for mentioning Ref17] to us. We thank of chance. The random case thus differs very significantly
Professor A. Aydin for kindly providing the data on joints from the results of our simulations and the crack data.
used to prepare Figs. 15 and 16. We also acknowledge ex- We also carried out Lomb periodogram analysis of the

changes with L. Carleson, T. Halsey, and R. Savit. samples, with similar results. We find that approximately one

out of three samples presents significant log-periodic struc-

APPENDIX: COMPARISON WITH RANDOM SYNTHETIC t“res'l as qr‘:al"f'ed by d.the Lomb per'Odogram'l In these

DATA GENERATED WITH A PURE POWER-LAW samples with log-periodic structure, approximately one out
DISTRIBUTION of three shows an improvement of th@ by a factor of at

least 2 when using the log-periodic formula compared to the
In order to assess the significance of our analysis of theimple power-law fit. We thus infer that the probability of
numerical and experimental data sets, we test it on a wellebserving from pure chance, in single sample, a log-
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periodic structure with quality comparable to our finding for ing log periodicity when it should be there £ our rate of

the needles is abouf The probability of getting by pure success for the needles. Thus, the probability of observing
chance log-periodic structures with quality comparable tahree failures out of ten samplesssuminghe systems must
our findings for the needles for seven samples out oftiem  be log periodic isP p=(3)(%)"(3)3~0.27. This is still
results for our simulations on the angle screening model omuch larger tharP o p-

needle} is thus Phonp= (39 (3)7(1— $)3~1.8x10°°. This To assess the statistical significance of our results, the
extremely small number taken at face value would imply thastandard statistical method is to use Bayes’s thedr&rh

our results are extremely significant statistically. Howeverwhich allows us to quantify precisely how our belief is modi-
we must take into account another source of error, namelyfied by an observation or measurement. Supposethagan-
that, if the log-periodicity is genuine, the rate of success fottifies our initial belief in the existence of the log-periodic
its observation is not 100%, due to noise and statistical flucstructure in the needles: in other worgs,is the a priori
tuations. Indeed, in our ten needle simulations, we only obprobability for the log-periodic structure’s existing as a
serve well-defined log-periodic structures in seven out of tergenuine physical phenomenon. The simplest natural unbi-
samples. We thus ask, what is the probability of observingased choice would b= 3, one-half probability of being
seven successes and three failu@ssumingthat the log-  genuine, one-half probability of not being there. If the reader
periodicity is genuine. We have only ten samples and thés skeptical, he can choose a small value gorsay psyeptics
best we can do is estimate that the probability of not observ=10"3. Now, the question is: How do the measurements
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we have made modify thig priori probability? Bayes's for p not too small. For instance, withh=3 ppese(1

theorem states that tree posteriori probability p,.s; for the  —6.7)x 107>, i.e., a confidence level better than 99.99%.
log periodicity’s being genuine is proportional to the prior For skeptics, takep= Pkeptics 103, This yields Ppost
probability p times the likelihood. Quantitatively, ~93%, which is still quite statistically significant.

pPLp Of course, Bayes'’s, theorem teaches us that it is impos-

sible to convince someone diametrically opposed to a hy-
pothesis(corresponding here to take<10 °). However,
Plugging in the previous numbers, we find that this formulastarting from a reasonable hypothegisnot too small, the
can be approximated by evidence we have presented strongly strengthens the case for
the genuine existence of spontaneously generated log-
17D Pron periodic structures.
p Pip

Ppost PPLp+(1=p)Pron 1p

Ppost™ 1-
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